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The computational approximation of large-scale Bayesian Inverse Problems (BIPs), i.e. characterized by
a large number of available observations, involves utilizing techniques such as Markov Chain Monte Carlo
(MCMC) to generate samples from the posterior distribution of the BIP. The primary obstacle in this
approach arises from the necessity of repeatedly evaluating the high-fidelity forward model. This becomes
cost-prohibitive for complex computational models, such as parametric PDEs with high-dimensional
inputs, prompting the need for effective computational surrogates to facilitate MCMC execution.

In this work, we introduce a Multi-fidelity Neural Network (MF-NN) surrogate construction for Bayesian
Inverse Problems (BIPs), inspired by the approach presented in [3]. Initially, an offline step involves con-
structing a low-fidelity prior-based surrogate solver using a neural network (NN) following the Galerkin-
POD-NN technique [2]. Subsequently, a local online refinement process utilizes a NN to improve the
low-fidelity ap- proximation by incorporating newly computed high-fidelity data. Unlike existing meth-
ods, the MF-NN approach enables an accurate approximation of the posterior distribution of the BIP
by adaptively refining the model only where needed, specifically in regions where the posterior concen-
tration phenomenon occurs. By focusing the computational effort only where necessary, the number of
high-fidelity model evaluations is significantly reduced.

As a concrete application, we consider the time-harmonic acoustic scattering by random domains, as in
[1]. Numerical experiments validate the effectiveness, efficiency and accuracy of the AMF-NN approach,
especially in challenging settings for BIPs, including both the low noise and large data limits.
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In the context of nuclear energy production, waste management, and nuclear safeguards, the precise
calculation and quantification of spent nuclear fuel characteristics are important for safety, efficiency,
and sustainability. The abundances and activities of nuclear composites characterizing spent nuclear
fuel can be mathematically modeled with the Bateman equation. This is a linear first-order ordinary
differential equation that describes the time evolution of the nuclear assemblies based on decay rates.
The complexity of solving this equation arises from the stiffness of the matrix and the potentially large
number of considered nuclides. Moreover, inherent uncertainties of the input quantities from theory and
measurements require reliable uncertainty quantification, especially for safety assessment.

This talk presents a novel approach to solving the Bateman equation using Physics Informed Neural Net-
works (PINN). Several different versions of PINN with various loss functions and network architectures,
including classical PINN, Hard Boundary Method, Extreme Learning Machine Method, Exponential
Method, and Domain Decomposition Method were implemented and validated. Their performance was
tested on a simplified real use case considering the decay of Plutonium241. The performances of the
PINNs were validated against the current state-of-the-art solution method, the Chebyshev Rational Ap-
proximation, and showed comparable accuracy.

Furthermore, the best PINN model was used to perform uncertainty quantification, demonstrating how
the use of transfer learning can result in competitiveness with state-of-the-art solvers. The talk will
present the advantages as well as the limits of the considered PINN methods for solving the Bateman
Equation.
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In this talk we present the Physics-Aware Deep Nonnegative Matrix Factorization (PAD-NMF), a neural
network stemming from recent “deep-unfolding” techniques with the goal of creating more interpretable
networks by unfolding the iterations of traditional algorithmic schemes, here the well-known Nonnegative
Matrix Factorization (NMF) algorithm. In general, NMF can be applied to a variety of dictionary
learning problems as well as signal detection tasks. It can be unfolded to exploit a neural training and
made ”Physics-Aware” by embedding in the network’s architecture intrinsic properties of the expected
output. Indeed, the two- factor iterative paradigm typical of NMF, once unfolded, allows great control
on the way the quantities of interest are propagated through the network, e.g. sparsity, smoothness,
etc. Its interpretability is then guaranteed by a nonnegativity- preserving back-propagation algorithm.
Furthermore, the physics-awareness is introduced by three main aspects: discriminative initialization of
the dictionary based on our prior knowledge of the physical system, enforcement of the time- correlation
by projecting the forward- and back-propagated factors into a block- Hankel space, and a modified loss-
function that shifts the focus away from Wiener filtering in favor of a more accurate separation of the
mixture contents.

We will show some applications of PAD-NMF in the context of audio source separation and detection,
where the signals to be recognized within general mixtures are transients from impulses applied to a
mechanical system.
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The Alternating Current Optimal Power Flow (AC-OPF) is a highly non-linear non-convex optimization
problem. The AC-OPF is often used to monitor real-time grid operations and thus the operators demand
efficient and accurate algorithms. However, solving this problem is often computationally expensive for
large power grids. In this work, we integrate the methods of Physics Informed Neural Networks (PINNs),
Graph Neural Networks (GNNs) and Augmented Lagrangian methods in one algorithm to obtain highly
accurate solutions. This approach takes advantage of the natural graph description of the power grid and
ensures that the underlying physical rules and limitations are respected. We show via benchmark test
cases this unsupervised approach provides a near-optimal solution that can be applied to different grids
without having to adapt its architecture or hyperparameters.
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Deep learning is a powerful tool for solving data driven differential problems and has come out to have
successful applications in solving direct and inverse problems described by PDEs, even in presence of
integral terms. In this paper, we propose to apply radial basis functions (RBFs) as activation functions
in suitably designed Physics Informed Neural Networks (PINNs) to solve the inverse problem of computing
the peridynamic kernel in the nonlocal formulation of classical wave equation, resulting in what we call
RBF-iPINN. We show that the selection of an RBF is necessary to achieve meaningful solutions, that
agree with the physical expectations carried by the data. We support our results with numerical examples
and experiments, comparing the solution obtained with the proposed RBF-iPINN to the exact solutions.
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Physics-Informed Neural Networks (PINNs) represent a powerful approach for solving inverse problems,
including identification and parameter estimation in nonlinear systems. The integration of physics-based
knowledge into neural networks allows for more efficient and accurate learning, particularly in scenarios
where limited and noisy data are available.

As a first application of the PINN idea, we introduce iNeuralSINDy as a novel approach in nonlinear
system identification. SINDy is a widely adopted technique for identifying nonlinear dynamics. Despite
numerous efforts, the presence of noisy and limited data continues to pose a significant hurdle to the
effectiveness of the SINDy approach. We present a resilient approach for unveiling nonlinear governing
equations from data characterized by noise and scarcity. Our strategy involves employing neural networks
to assimilate an implicit representation based on measurement data. This representation not only gen-
erates outputs in proximity to the measurements but also encapsulates the time evolution of the output
within a dynamic system. By harnessing the implicit representation through neural networks, we acquire
derivative information, a prerequisite for SINDy, utilizing an automatic differentiation tool. To fortify the
robustness of our methodology, we introduce an integral condition on the output of the implicit networks.

In the second application, we introduce the discrete empirical interpolation method (DEIM), specifically
the QR-factorization-based variant known as Q-DEIM, as a strategic sampling technique for mitigating
the computational complexities and time demands associated with parameter estimation for partial dif-
ferential equations (PDEs) using PINN. Our methodology involves the judicious pre-selection of spatio-
temporal data, thereby constructing a reduced dataset for training a neural network to estimate the
coefficients of the underlying PDE governing the data. We establish that our proposed Q-DEIM-based
sampling approach not only reduces the required training data for the neural network but also yields a
commendable approximation of PDE coefficients in fewer training iterations.
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Traditional biomechanical impact simulations, often relying on the Finite Element Method (FEM), face
limitations in computational efficiency, parameter tuning complexity, and ability to extract data-driven
insights. Physics-Informed Neural Networks (PINNs) emerge as a transformative approach to address
these challenges and usher in a new era of advanced simulation techniques in computational biomechanics.

PINNs, seamlessly integrating physics principles into neural network architectures, provide a powerful tool
for enhancing biomechanical impact simulations. By leveraging neural networks’ ability to approximate
complex relationships and learn from data, we can achieve significant improvements in several key areas:

• Computational Efficiency: PINNs significantly reduce computational time by approximating intri-
cate biomechanical relationships, eliminating the need for extensive FEM simulations.

• Model Calibration and Optimization: PINNs expedite parameter tuning in biomechanical models,
streamlining the calibration process and enhancing model accuracy.

• Data-Driven Insights: Neural networks’ pattern recognition capabilities enable us to uncover hid-
den patterns and relationships within biomechanical datasets, leading to deeper understanding of
biological structures and behaviors.

• Real-Time Decision Support: PINNs enable real-time predictions during simulations, enabling rapid
decision-making in dynamic scenarios where timely responses are crucial.

• Integration with Finite Element Models: Hybrid approaches combining PINNs with FEM can
synergistically enhance simulation accuracy and efficiency.



PINN-PAD: Physics Informed Neural Networks in PADova
22–23 February 2024, Padova, Italy

Wavenumber-robust deep ReLu neural network emulation in
acoustic wave scattering
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We present wavenumber-robust error bounds using deep neural networks to emulate the solution to
the time-harmonic, sound-soft acoustic scattering problem in the exterior of a smooth, convex, two-
dimensional obstacle.

The starting point of our analysis is the reduction of the scattering problem in the unbounded exterior
region to its (bounded) boundary by means of the wavenumber-robust Combined Field Integral Equation
(CFIE), yielding a second-kind boundary integral equation posed on the smooth surface Γ of the scatterer.
This BIE is well-posed in L2(Γ), with explicit bounds on the continuity and stability constants that depend
explicitly on the (non-dimensional) wavenumber κ.

Utilizing well-known wavenumber-explicit asymptotics of the solution to this problem, as introduced
in the work of Melrose and Taylor [1], we explore the numerical approximation of the BIE using fully
connected, deep feed-forward neural networks (DNNs) with the Rectified Linear Unit (ReLU) as the
chosen activation function [2]. The results presented here can be straightforwardly extended to different
activation functions such as the hyperbolic tangent or the Rectified Power Unit.

Through a constructive argument, we prove the existence of DNNs affording an ε-error in the L∞(Γ)-norm
with a fixed and small width and a depth that increases spectrally with the accuracy ε and polynomially
with respect to log(κ). By spectral accuracy, we mean that there exists α > 0 such that for each n ∈ N,
there exists a constant Cn > 0, such that for a prescribed accuracy ε > 0, the complexity of the DNN is
bounded by Cnε

α
n .
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Biophysical models of the cardiac function are becoming increasingly popular due to their ability to
predict patient outcomes and optimise treatment plans. However, the development and personalisation
of these models is computationally expensive and requires extensive calibration, making them difficult
to apply in clinical settings. In this presentation we study the application of a novel methodology
[1] integrating physics-informed neural networks [2] with high-resolution three-dimensional nonlinear
cardiac biomechanical models to reconstruct displacement fields and estimate patient-specific biophysical
properties (s.a. passive stiffness and active contractility). The physics of the problem is represented
by a mathematical model based on partial differential equations. Additionally, the learning algorithm
incorporates displacement and strain data that can be routinely acquired in clinical settings. Various
training methodologies are explored, e.g. different sampling strategies and adaptive weighting schemes
for the individual loss terms as well as Fourier features. The presentation includes a series of benchmark
tests that demonstrate the accuracy, robustness, and promising potential of this method for the precise
and efficient determination of patient-specific physical properties in nonlinear biomechanical models.
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We propose Gauss-Newton Natural Gradient (GNNG), a novel second-order optimization method based
on Gauss-Newton’s method in function space for the training of physics-informed neural networks (PINN).
We give an infinite dimensional differential geometric interpretation of our method, explaining the al-
gorithm’s optimization dynamics in function space. More precisely, we have shown that the proposed
method follows the function space updates up to an orthogonal projection on the model’s tangent space.
We demonstrate that – given appropriate integral discretization in the PINN formulation – the pro-
posed method corresponds to the well-known Gauss-Newton method in parameter space. This leads to
a matrix-free formulation that allows the applicability of the method to large network sizes.

Numerically, the proposed method demonstrates unprecedented accuracy of PINN solutions for the
Navier-Stokes equations, achieving relative L2 errors up to two orders of magnitude lower than those
obtained with standard optimizers like Adam or BFGS, and reaching as low as 10−8.
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The celebrated 1982 Hopfield Neural Network is a dynamic brain model with symmetric and constant
synaptic weights. It has been recognized, recently even by Hopfield itself, the necessity of developing
more realistic representations incorporating the asymmetry. Indeed, symmetry appears a too restrictive
simplification. Dynamically, it is forcing –in an unrealistic way– the recognition of every incoming pat-
tern, always going towards a minimum or a saddle of an underlying Lyapunov-like energy function, always
existing in the symmetric case. Physiologically, symmetry is not reliable, since the role of axons and den-
drites is not exchangeable. Some authors (e.g. Krotov, Parisi) also dispute the constancy of the synaptic
matrix. First at all, we present a general framework producing Hopfield-like vector fields of gradient type,
encompassing the existing symmetric models (2021 Hopfield, Krotov) as particular cases. Moreover, we
introduce dynamic synaptic weights controlled during the dynamics according to a suitable multiobjec-
tive variational principle. As a result, the deriving dynamics incorporates relevant features observed in
the real memory functioning: pattern recognition, pattern learning, pattern generating undetermined
dynamics (wandering) and finally the possibility of forgetting and restoring memories.
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The problem of predicting the arrival of coronal mass ejections (CMEs) to Earth represents an important
topic in the context of space weather, which has been addressed by many empirical, physics-based and
machine learning strategies.

In this talk, we propose a physics-driven deep learning method, in which we include the widely-used
drag-based physical model in the definition of the loss functions to minimize during the training process
of a cascade of two neural networks. We show that including physical information in the architecture
improves the predictive capabilities and robustness of the scheme with respect to the purely-data driven
approach.
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We consider the simulation of Bayesian statistical inverse problems governed by large-scale linear and
nonlinear partial differential equations (PDEs). Markov chain Monte Carlo (MCMC) algorithms are
standard techniques to solve such problems. However, MCMC techniques are computationally challenging
as they require a prohibitive number of forward PDE solves. The goal of this paper is to introduce a
fractional deep neural network (fDNN) based approach for the forward solves within an MCMC routine.
Moreover, we discuss some approximation error estimates. We illustrate the efficiency of fDNN on
inverse problems governed by nonlinear elliptic partial differential equations and the unsteady Navier-
Stokes equations. In the former case, two examples are discussed, respectively depending on two and
100 parameters, with significant observed savings. The unsteady Navier-Stokes example illustrates that
fDNN can outperform existing DNNs, doing a better job of capturing essential features such as vortex
shedding.
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Recently, there has been a significant research interest in using neural networks for solving partial dif-
ferential equations (PDEs) in general [2], and Schrödinger equations in particular [6]. The use of neural
networks was shown to mitigate, or even break the curse of dimensionality [4] encountered in standard
numerical methods, such as finite-volume or spectral methods. However, standard neural networks for
solving PDEs seem to be fragile [3], since they require a lot of engineering and show high sensitivity to
hyperparameters. In the context of quantum mechanics, neural networks were shown to accurately ap-
proximate ground-states, i.e., eigenfunctions corresponding to smallest eigenvalues, of molecular systems,
while scaling moderately with the dimension of the problem [5]. However, extensions to computing many
excited states, i.e., eigenfunctions corresponding to larger eigenvalues, suffer from convergence issues and
remain challenging [1].

In this talk I introduce a neural-network based paradigm, where complex and rich families in L2 are
produced by pushing forward standard basis sets through non-singular measurable mappings. I show
that a bijectivity assumption on the mapping is a necessary and sufficient conditions for the resulting
families to be dense in L2 [8]. This allows us to model these mappings using normalizing flows, an
important tool from generative probabilistic modeling. I present a nonlinear variational framework to
approximate molecular wavefunctions in the linear span of these flow-induced families. The framework
allowed to compute many eigenstates of various molecular systems with orders-of-magnitude improved
accuracy over standard linear methods [7].
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The use of neural networks to learn the dynamics of Delay Differential Equations (DDEs) has been
recently considered in [1]. The methodology proposed therein relies on reducing to finite dimension
the infinite-dimensional dynamical system associated to the DDE by following the approach presented
in [2]. In particular, the approximating Ordinary Differential Equation (ODE) is obtained by using a
discretization based on the standard Euler’s method. In this talk we illustrate a recent extension based
on pseudospectral collocation, which leads in general to a more efficient approximation of the underlying
DDE. We focus our interest on analyzing the role of the degree of the collocation polynomial in terms of
the effectiveness of the learning algorithm and in view of understanding its interplay with the newtwork
hyperparameters. Experimental results refer both to the celebrated Mackey-Glass equation as well as to
a delay model for a supply chains.
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