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We present wavenumber-robust error bounds using deep neural networks to emulate the solution to
the time-harmonic, sound-soft acoustic scattering problem in the exterior of a smooth, convex, two-
dimensional obstacle.

The starting point of our analysis is the reduction of the scattering problem in the unbounded exterior
region to its (bounded) boundary by means of the wavenumber-robust Combined Field Integral Equation
(CFIE), yielding a second-kind boundary integral equation posed on the smooth surface Γ of the scatterer.
This BIE is well-posed in L2(Γ), with explicit bounds on the continuity and stability constants that depend
explicitly on the (non-dimensional) wavenumber κ.

Utilizing well-known wavenumber-explicit asymptotics of the solution to this problem, as introduced
in the work of Melrose and Taylor [1], we explore the numerical approximation of the BIE using fully
connected, deep feed-forward neural networks (DNNs) with the Rectified Linear Unit (ReLU) as the
chosen activation function [2]. The results presented here can be straightforwardly extended to different
activation functions such as the hyperbolic tangent or the Rectified Power Unit.

Through a constructive argument, we prove the existence of DNNs affording an ε-error in the L∞(Γ)-norm
with a fixed and small width and a depth that increases spectrally with the accuracy ε and polynomially
with respect to log(κ). By spectral accuracy, we mean that there exists α > 0 such that for each n ∈ N,
there exists a constant Cn > 0, such that for a prescribed accuracy ε > 0, the complexity of the DNN is
bounded by Cnε

α
n .
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[2] Elbrächter D., Perekrestenko, D., Grohs, P., and Bölcskei, H. (2021). Deep neural network approxi-
mation theory. IEEE Transactions on Information Theory, 67(5), 2581-2623.

[3] Domı́nguez, V., Graham, I. G., and Smyshlyaev, V. P. (2007). A hybrid numerical-asymptotic bound-
ary integral method for high-frequency acoustic scattering. Numerische Mathematik 106(3), 471-510.

[4] Ecevit, F., and Eruslu, H. H. (2019). A Galerkin BEM for high-frequency scattering problems based
on frequency-dependent changes of variables. IMA Journal of Numerical Analysis 39(2), 893-923.


