Wavenumber-robust deep ReLu neural network emulation in acoustic wave scattering

Henríquez Fernando1 and Schwab Christoph2

1Chair of Computational Mathematics and Simulation Science, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
2Seminar for Applied Mathematics, ETH Zürich, 8092 Zürich, Switzerland

We present wavenumber-robust error bounds using deep neural networks to emulate the solution to the time-harmonic, sound-soft acoustic scattering problem in the exterior of a smooth, convex, two-dimensional obstacle.

The starting point of our analysis is the reduction of the scattering problem in the unbounded exterior region to its (bounded) boundary by means of the wavenumber-robust Combined Field Integral Equation (CFIE), yielding a second-kind boundary integral equation posed on the smooth surface Γ of the scatterer. This BIE is well-posed in $L^2(\Gamma)$, with explicit bounds on the continuity and stability constants that depend explicitly on the (non-dimensional) wavenumber κ.

Utilizing well-known wavenumber-explicit asymptotics of the solution to this problem, as introduced in the work of Melrose and Taylor \cite{MelroseTaylor}, we explore the numerical approximation of the BIE using fully connected, deep feed-forward neural networks (DNNs) with the Rectified Linear Unit (ReLU) as the chosen activation function \cite{ElbrachterPerekrestenkoGrohsBoelcskei}. The results presented here can be straightforwardly extended to different activation functions such as the hyperbolic tangent or the Rectified Power Unit.

Through a constructive argument, we prove the existence of DNNs affording an ϵ-error in the $L^\infty(\Gamma)$-norm with a fixed and small width and a depth that increases spectrally with the accuracy ϵ and polynomially with respect to $\log(\kappa)$. By spectral accuracy, we mean that there exists $\alpha > 0$ such that for each $n \in \mathbb{N}$, there exists a constant $C_n > 0$, such that for a prescribed accuracy $\epsilon > 0$, the complexity of the DNN is bounded by $C_n \epsilon^\frac{2}{\alpha}$.

REFERENCES