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Spectral learning for solving molecular Schrödinger equations
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Recently, there has been a significant research interest in using neural networks for solving partial dif-
ferential equations (PDEs) in general [2], and Schrödinger equations in particular [6]. The use of neural
networks was shown to mitigate, or even break the curse of dimensionality [4] encountered in standard
numerical methods, such as finite-volume or spectral methods. However, standard neural networks for
solving PDEs seem to be fragile [3], since they require a lot of engineering and show high sensitivity to
hyperparameters. In the context of quantum mechanics, neural networks were shown to accurately ap-
proximate ground-states, i.e., eigenfunctions corresponding to smallest eigenvalues, of molecular systems,
while scaling moderately with the dimension of the problem [5]. However, extensions to computing many
excited states, i.e., eigenfunctions corresponding to larger eigenvalues, suffer from convergence issues and
remain challenging [1].

In this talk I introduce a neural-network based paradigm, where complex and rich families in L2 are
produced by pushing forward standard basis sets through non-singular measurable mappings. I show
that a bijectivity assumption on the mapping is a necessary and sufficient conditions for the resulting
families to be dense in L2 [8]. This allows us to model these mappings using normalizing flows, an
important tool from generative probabilistic modeling. I present a nonlinear variational framework to
approximate molecular wavefunctions in the linear span of these flow-induced families. The framework
allowed to compute many eigenstates of various molecular systems with orders-of-magnitude improved
accuracy over standard linear methods [7].
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