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Spectral learning for solving molecular Schrodinger equations
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Recently, there has been a significant research interest in using neural networks for solving partial dif-
ferential equations (PDEs) in general [2], and Schrodinger equations in particular [6]. The use of neural
networks was shown to mitigate, or even break the curse of dimensionality [4] encountered in standard
numerical methods, such as finite-volume or spectral methods. However, standard neural networks for
solving PDEs seem to be fragile [3], since they require a lot of engineering and show high sensitivity to
hyperparameters. In the context of quantum mechanics, neural networks were shown to accurately ap-
proximate ground-states, i.e., eigenfunctions corresponding to smallest eigenvalues, of molecular systems,
while scaling moderately with the dimension of the problem [5]. However, extensions to computing many
excited states, i.e., eigenfunctions corresponding to larger eigenvalues, suffer from convergence issues and
remain challenging [1].

In this talk I introduce a neural-network based paradigm, where complex and rich families in L? are
produced by pushing forward standard basis sets through non-singular measurable mappings. 1 show
that a bijectivity assumption on the mapping is a necessary and sufficient conditions for the resulting
families to be dense in L? [8]. This allows us to model these mappings using normalizing flows, an
important tool from generative probabilistic modeling. I present a nonlinear variational framework to
approximate molecular wavefunctions in the linear span of these flow-induced families. The framework
allowed to compute many eigenstates of various molecular systems with orders-of-magnitude improved
accuracy over standard linear methods [7].

REFERENCES

[1] Cuzzocrea, A., Scemama, A., Briels, W. J., Moroni, S., and Filippi, C. (2020). Variational principles in
quantum Monte Carlo: The troubled story of variance minimization. 16(7):4203-4212.

[2] E, W. and Yu, B. (2018). The deep Ritz method: a deep learning-based numerical algorithm for solving
variational problems. Commun. Math. Stat., 6(1):1-12.

[3] E, W., Ma, C., Wojtowytsch, S., and Wu, L. (2020). Towards a mathematical understanding of neural
network-based machine learning: what we know and what we don’t.

[4] Grohs, P., Hornung, F., Jentzen, A., and Von Wurstemberger, P. (2018). A proof that artificial neural
networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial dif-
ferential equations.

[6] Hermann, J., Schitzle, Z., and Noé, F. (2020). Deep-neural-network solution of the electronic Schrodinger
equation.

[6] Hermann, J., Spencer, J., Choo, K., Mezzacapo, A., Foulkes, W., Pfau, D., Carleo, G., and Noé, F. (2022).
Ab-initio quantum chemistry with neural-network wavefunctions.
[7] Saleh, Y., Corral, A. F., Iske, A., Kiiupper, J., and Yachmenev, A. (2023). Computing excited states of

molecules using normalizing flows.

[8] Saleh, Y., Iske, A., Yachmenev, A., and Kiipper, J. (2023). Augmenting basis sets by normalizing flows. Proc.
Appl. Math. Mech., 23(1):202200239.



