
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Solving the Bateman Equation using
Physics Informed Neural Networks

Romana Boiger :: Laboratory of Waste Management :: Paul Scherrer Institut

Guglielmo Pacifico, Arnau Alba, Andreas Adelmann

PINN-PAD: Physics Informed Neural Networks in PADova, February 2024

Bateman Equation

𝑑𝑁 𝑡

𝑑𝑡
= 𝔸𝑁 𝑡 , with 𝑁 𝑡 = 0 = 𝑁0

Where:

• 𝑁 𝑡 ∈ ℝ𝑛 is the nuclide concentration vector

• 𝔸 ∈ ℝ𝑛×𝑛 is the transmutation matrix

• 𝑛 ∈ ℕ+ is the number of nuclides

• 𝑡 ∈ ℝ the time

Mathematical model, that describes the

abundances and activities in decay chains of radioactive isotopes

1

Applications: Bateman Equation

2

• Nuclear Physics: nuclear depletion codes – predict the behaviour of isotopes during reactor
operation and fuel depletion

• Radiochemistry: study the kinetics of radioactive decay

• Nuclear Medicine: medical imaging and therapy using radioactive isotopes – model the
decay of isotopes injected into the body and predict concentration at specific times

• Radiation Protection and Environmental Monitoring: predict the behaviour of radioactive
isotopes released into the environment from nuclear accidents, nuclear waste disposal sites,
or industrial processes

𝑑𝑁 𝑡

𝑑𝑡
= 𝔸𝑁 𝑡 , with 𝑁 𝑡 = 0 = 𝑁0

Bateman Equation

3

𝑑𝑁 𝑡

𝑑𝑡
= 𝔸𝑁 𝑡 , with 𝑁 𝑡 = 0 = 𝑁0

• 𝑁 𝑡 ∈ ℝ𝑛 is the nuclide concentration vector

• 𝔸 ∈ ℝ𝑛×𝑛 is the transmutation matrix

• 𝑛 ∈ ℕ+ is the number of nuclides

• 𝑡 ∈ ℝ the time

• Formulated by Ernest Rutherford in 1905

• Analytic solution by Harry Bateman (involving Laplace transform) in 1910:

• Computational errors, slow if n gets bigger => numerical methods for general case

𝑁𝑛(𝑡) = 𝑁1 0 × (ς𝑖=1
𝑛−1 𝜆𝑖) × σ𝑖=1

𝑛 𝑒−𝜆𝑖𝑡

ς𝑗=1,𝑗≠𝑖
𝑛 (𝜆𝑗−𝜆𝑖)

Bateman Equation

4

𝑑𝑁 𝑡

𝑑𝑡
= 𝔸𝑁 𝑡 , with 𝑁 𝑡 = 0 = 𝑁0

Transmutation matrix 𝔸:

- Is sparse: most of its elements are zero

- Is stiff where: κ 𝔸 ≔
𝑅𝑒 𝜆𝑚𝑎𝑥

𝑅𝑒 𝜆𝑚𝑖𝑛
, where 𝜆𝑚𝑎𝑥 ≥ λ𝑖 ≥ λ𝑚𝑖𝑛

- The order of rows and columns is arbitrary, given a permutation matrix 𝑃

𝑑𝑁 𝑡

𝑑𝑡
= 𝑃𝔸𝑃 𝑁 , with 𝑁(𝑡 = 0) = 𝑃𝑁0

Bateman Equation

5

Decay matrix ➝ can be permuted into a lower triangular matrix

Uncertainty Quantification

6

• Both 𝑁0 & 𝔸 have intrinsic uncertainties

• We want to evaluate the propagation of the uncertainties

𝑁0 ± Δ𝑁0 → 𝑁 ± Δ𝑁

𝔸 ± Δ𝔸 → 𝑁 ± Δ𝑁

• Use Monte Carlo method & transfer learning

Solving the Bateman Equation

7

Numerical Methods for
ODEs

• e.g. Runge-Kutta

Evaluating the Matrix Exponentials

• Padé approximation

𝑅 𝑥 =
σ𝑗=0
𝑚 𝑎𝑗𝑥

𝑗

1+ σ𝑘=1
𝑛 𝑏𝑘𝑥

𝑘

• Chebyshev Rational Approximation

Method (CRAM) 𝑟𝑘,𝑘 𝑥 =
𝑝𝑘 𝑥

𝑞𝑘 𝑥
,

satisfying inf𝑟𝑘,𝑘∈𝜋𝑘,𝑘 |𝑟𝑘,𝑘 𝑥 − 𝑒𝑥|

Analytic
Solution of

Linear Chains

=> PINNs (physics informed neural networks) for solving the Bateman Equation

𝑑𝑁 𝑡

𝑑𝑡
= 𝔸𝑁 𝑡 , with 𝑁 𝑡 = 0 = 𝑁0 𝑁 𝑡 = 𝑒𝔸𝑡 𝑁0

8

Physics Informed Neural Networks

• To achieve this, we embed the Bateman equation in the loss function

• ℒ 𝜃 = ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠 𝜃 + ℒ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜃 =
1

𝑇
σ𝑖=0
𝑇 𝑑𝑁𝑁 𝑡𝑖 ,;𝜃

𝑑𝑡
− 𝔸𝑁𝑁 𝑡𝑖; 𝜃

2

2

+ 𝑁𝑁 𝑡 = 0; 𝜃 − 𝑁0 2

2

• Physics Informed Neural Networks (PINNs) are NNs designed to solve differential
equations.

Theorem:1 Let 𝑁 𝑡 be a continuous function, 𝑁𝑁(𝑡; 𝜃) a neural network

parameterized by 𝜃, and 𝜖 a fixed error greater than zero, then:

∀𝑁 ∈ 𝐶0, ∀𝜖 > 0, ∃𝜃: 𝑁 𝑡 − 𝑁𝑁(𝑡; 𝜃) < 𝜖

𝑑𝑁 𝑡

𝑑𝑡
= 𝔸𝑁 𝑡 , with 𝑁 𝑡 = 0 = 𝑁0

1: Hornik, Stinchcombe, White 1998

9

• 𝔸 = 5 × 5 matrix for the decay for Plutonium-241

• 𝜅 𝔸 = 9 × 109

• Solve it for 128 days

• Compare the solution with CRAM over 104 time steps

• Use 𝐿2 as our metric: 𝐿2 =
1

5
෍

𝑖=1

𝑛

𝐿2
𝑁𝑖

𝐿2
𝑁𝑖 =

1

104
෍

𝑗=1

104

𝑁𝑖
𝐶𝑅𝐴𝑀 𝑡𝑗 −𝑁𝑖

𝑃𝐼𝑁𝑁 𝑡𝑗
2
× 100

Plutonium Decay

PINN Approach: Vanilla Method

10

• Basic implementation of PINNs1

Key concept: loss function (weighted sum of the two loss terms)

ℒ 𝜃 =
𝑤𝑝ℎ𝑦𝑠𝑖𝑐𝑠ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠 𝜃 + 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙ℒ𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝜃)

𝑤𝑝ℎ𝑦𝑠𝑖𝑐𝑠 + 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙

• The loss scales with the weights → transformation to simplify the tuning of the weights can

be used

ℒ 𝜃 =
ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠 𝜃 + 𝑤ℒ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜃

1 + 𝑤
where 𝑤 =

𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑤𝑝ℎ𝑦𝑠𝑖𝑐𝑠

1: Raissi, Perdikaris, Karniadakis 2019

11

Use Optuna to do the hyperparameters search

Training time (s) 𝑳𝟐(%)

Vanilla 1528.28 62.23

CRAM – takes 13 seconds for 10000 time steps for 128 days

High training time, high L2 error and

manual weight tuning!

Comparison of the PINN Methods

12

Problem with Vanilla loss: manual weight tuning

Solution: Rewrite constrained problem as un unconstrained one

Two different ansatz to unconstrain the problem:

⇒
𝑑𝜓 𝑡

𝑑𝑡
= 𝔸𝜓 𝑡

Defined by Lagaris, Likas, Fotiadis 1998: Theory of Functional Connections (TFC) by Mortari
2017, Mortari, Johnston and Smith 2019

⇒ ℒ = ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠 =
1

𝑇
෍

𝑖=0

𝑇
𝑑𝜓 𝑡𝑖; 𝜃

𝑑𝑡
− 𝔸𝜓 𝑡𝑖; 𝜃

2

2

𝜓 ≔ 𝑁𝑁 𝑡; θ + 𝑁0 − 𝑁𝑁 𝑡 = 0; θ𝜓 𝑡 ≔ 𝑁0 + 𝑡𝑁𝑁 𝑡; θ

Hard Boundary Method

13

Use Optuna to do the hyperparameters search

Training time (s) 𝑳𝟐(%)

Vanilla 1528.28 62.23

HB-Lagaris 5084.54 131.67

HB-TFC 3218.89 68.52

H
B

-T
F

C

CRAM – takes 13 seconds for 10000 time steps for 128 days

High training time, high L2 error!

Comparison of the PINN Methods

H
B

-L
a
g

a
ri

s

14

Problem: Long timescale – stiffness?

Key idea:

• Divide and conquer, like in Moseley, Markham, Nissen-Meyer 2023

• Use the output of the previous sub-domain as the initial condition for the next one, DeFlorio,
Schiassi, Furfaro 2022

• Use transfer-learning from the previous sub-domain to the next one

Domain Decomposition Method

Seite 16

Hyperparameters

Num of sub-domains 1106

Length sub-domain 2hr 46min

Neurons per
sub-domain

144

Time steps per
sub-domain

75552

Results

training time 1° sub-domain 39min 6𝑠

average training time
[2, 1106] sub-domains

15.6 𝑠

𝐿2 0.1945 %

• Combine the HB-TFC with Domain
Decomposition to solve the 128 days
problem

5hr

H
B

-T
F

C
H

B
-T

F
C

 w
it

h
 d

o
m

a
in

d
e
c

o
m

p
o

s
it

io
n

15

Extending the Limit with Domain Decomposition

𝜃1

𝜃2

𝜃3

𝜃4

𝜃ℎ𝑤ℎ

𝑏ℎ

𝑁𝑁

Problem with Vanilla loss and Hard boundary loss: NN training challenge and effort

Solution: Huang, Zhu, Siew 2006: Extreme learning machine:

• Use single layer NN with random input weights and biases

• Compute output weights from closed-form solution

𝑤𝑗 ∈ 𝑈 −𝑎 , 𝑎 , 𝑏𝑗 ∈ 𝑈 −𝑐, 𝑐

for 𝑗 = 1,2, … , ℎ given 𝑎, 𝑐 ∈ ℝ+

⇒ 𝑁𝑁 𝑡; Ԧ𝜃 =෍

𝑗=1

ℎ

𝜃𝑗𝜎 𝑤𝑗𝑡 + 𝑏𝑗 = Ԧ𝜎 ⋅ Ԧ𝜃

ℒ θ =
1

𝑇
෍

𝑖=0

𝑇
𝑑σ 𝑡𝑖
𝑑𝑡

− 𝔸 [σ 𝑡𝑖 ⋅ θ − σ 𝑡 = 0 ⋅ θ + 𝑁0]
2

2

Solve the linear system ⟹ 𝒥θ = − Ԧℒ 0
16

Extreme Learning Machine Method

17

Use Optuna to do the hyperparameters search

Training time (s) 𝑳𝟐(%)

Vanilla 1528.28 62.23

HB-Lagaris 5084.54 131.67

HB-TFC 3218.89 68.52

ELM 15.47 56.94

ELM-LBFGS 5.14 22.25

CRAM – takes 13 seconds for 10000 time steps for 128 days

High L2 error!

Comparison of the PINN Methods

E
L

M
-L

B
F

G
S

λ1

λ3

λ2

𝜃11

𝜃21
𝜃22

𝜃31
𝜃32

𝜃33

t

𝑒−𝜆1𝑡

𝑒−𝜆2𝑡

𝑒−𝜆3𝑡

𝑁1

𝑁2

𝑁3

18

Assumption 1: if 𝜆𝑖 ≠ 𝜆𝑗 for 𝜆𝑖 ∈ 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝔸 ∀𝑖 ≠ 𝑗

Assumption 2: 𝔸 is a decay matrix

⟹ 𝑁𝑁 𝑡; θ = ෍

𝑖=1

𝑛

θ𝑖 𝑒
λ𝑖𝑡

Key ideas:

• Use a single layer NN

• Use as many neurons as nuclides (i.e. 𝑛 = ℎ)

• Use the exponential activation function (i.e. 𝜎 = 𝑒𝑥𝑝)

• Use the eigenvalues as the input weights (i.e. 𝑤𝑖 = 𝜆𝑖)

• Freeze the output weights such that they form a lower triangular
matrix

• Train only the output weights 𝜃

⟹ 𝑁 𝑡 =෍

𝑖=1

𝑛

𝑎𝑖 𝑒
λ𝑖𝑡

1: Pusa, Leppänen 2010

Exponential Method

19

Use Optuna to do the hyperparameters search

Training time (s) 𝑳𝟐(%)

Vanilla 1528.28 62.23

HB-Lagaris 5084.54 131.67

HB-TFC 3218.89 68.52

ELM 15.47 56.94

ELM-LBFGS 5.14 184.93

Exp-Vanilla 19.72 0.000035

Exp-HB-TFC 21.18 0.0014

E
x
p

-H
B

-T
F

C

CRAM – takes 13 seconds for 10000 time steps for 128 days

High training time!

Comparison of the PINN Methods

20

Use Monte Carlo method → 104 samples sampled from a Gaussian distribution with std = 5%

Uncertainty Quantification

21

• Not all final distributions are Gaussian

⟹ linear error propagation would fail

• Thanks to transfer learning we had a

speed up of over 90%:

o 1st sample → training time = 21.7 s

o 2nd − 1000th sample → training time = 2.1 s

CRAM – takes 1 second for 128 time steps for 128 days per sample

Uncertainty Quantification

22

Conclusions:

• We implemented and tested PINN methods to solve the𝑖241Pu decay for 128 days,

o HB-TFC combined with Domain Decomposition, with and L2 = 0.19% using 1106 sub-domains solved the

task, but was very slow

o Exp-HB-TFC, Exp-Vanilla with an L2 = 0.0014%, L2 = 0.000035 solved the task successfully, but still a bit

slower than CRAM

• We performed UQ making use of transfer learning

o speeding up the training time by over 90% for each sample compared to train 1000 PINNs from scratch

o results are comparable to CRAM

o PINN method is still slower than CRAM

Future work:

• Test the PINN methods with a larger matrix and a burnup matrix

• Alternative methods: Adaptive Weights, Use some known points as measurements points

Conclusions and Future Work

23

We create knowledge – today for tomorrow

Thanks!

	Folie 1: Solving the Bateman Equation using Physics Informed Neural Networks
	Folie 2: Bateman Equation
	Folie 3: Applications: Bateman Equation
	Folie 4: Bateman Equation
	Folie 5: Bateman Equation
	Folie 6: Bateman Equation
	Folie 7: Uncertainty Quantification
	Folie 8: Solving the Bateman Equation
	Folie 9: Physics Informed Neural Networks
	Folie 10: Plutonium Decay
	Folie 11: PINN Approach: Vanilla Method
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24: We create knowledge – today for tomorrow

