

Romana Boiger :: Laboratory of Waste Management :: Paul Scherrer Institut

Solving the Bateman Equation using Physics Informed Neural Networks

Guglielmo Pacifico, Arnau Alba, Andreas Adelmann

PINN-PAD: Physics Informed Neural Networks in PADova, February 2024

Bateman Equation

$$\frac{d\vec{N}(t)}{dt} = \mathbb{A}\vec{N}(t), \quad \text{with} \quad \vec{N}(t=0) = \overrightarrow{N_0}$$

Where:

- $\vec{N}(t) \in \mathbb{R}^n$ is the nuclide concentration vector
- $\mathbb{A} \in \mathbb{R}^{n \times n}$ is the transmutation matrix
- $n \in \mathbb{N}^+$ is the number of nuclides
- $t \in \mathbb{R}$ the time

Mathematical model, that describes the

abundances and activities in decay chains of radioactive isotopes

$$\frac{d\vec{N}(t)}{dt} = \mathbb{A}\vec{N}(t), \quad \text{with} \quad \vec{N}(t=0) = \overrightarrow{N_0}$$

- Nuclear Physics: nuclear depletion codes predict the behaviour of isotopes during reactor operation and fuel depletion
- Radiochemistry: study the kinetics of radioactive decay
- Nuclear Medicine: medical imaging and therapy using radioactive isotopes model the decay of isotopes injected into the body and predict concentration at specific times
- Radiation Protection and Environmental Monitoring: predict the behaviour of radioactive isotopes released into the environment from nuclear accidents, nuclear waste disposal sites, or industrial processes

Bateman Equation

$$\frac{d\vec{N}(t)}{dt} = \mathbb{A}\vec{N}(t), \quad \text{with} \quad \vec{N}(t=0) = \overrightarrow{N_0}$$

- $\vec{N}(t) \in \mathbb{R}^n$ is the nuclide concentration vector
- $\mathbb{A} \in \mathbb{R}^{n \times n}$ is the transmutation matrix
- $n \in \mathbb{N}^+$ is the number of nuclides
- $t \in \mathbb{R}$ the time
- Formulated by Ernest Rutherford in 1905
- Analytic solution by Harry Bateman (involving Laplace transform) in 1910:

$$\vec{N}_n(t) = \vec{N}_1(0) \times (\prod_{i=1}^{n-1} \lambda_i) \times \sum_{i=1}^n \frac{e^{-\lambda_i t}}{\prod_{j=1, j \neq i}^n (\lambda_j - \lambda_i)}$$

• Computational errors, slow if n gets bigger => numerical methods for general case

$$\frac{d\vec{N}(t)}{dt} = \mathbb{A}\vec{N}(t), \quad \text{with} \quad \vec{N}(t=0) = \overrightarrow{N_0}$$

Transmutation matrix A:

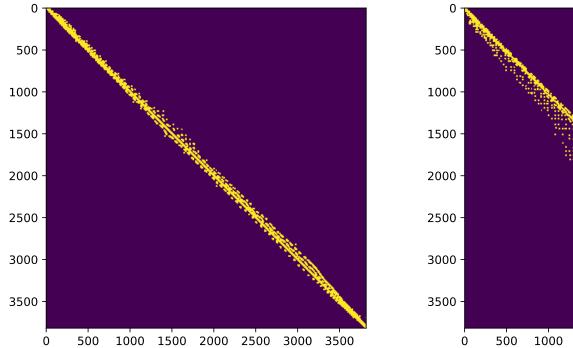
- Is **sparse**: most of its elements are zero

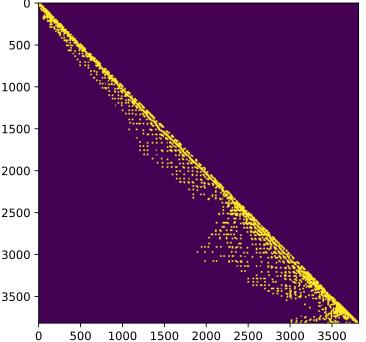
- Is stiff where:
$$\kappa(\mathbb{A}) \coloneqq \frac{|Re(\lambda_{max})|}{|Re(\lambda_{min})|}$$
, where $\lambda_{max} \ge \lambda_i \ge \lambda_{min}$

- The order of rows and columns is arbitrary, given a permutation matrix P $\frac{d\vec{N}(t)}{dt} = (PAP)\vec{N}, \text{ with } \vec{N}(t=0) = P\vec{N_0}$

Bateman Equation

Decay matrix \rightarrow can be permuted into a lower triangular matrix



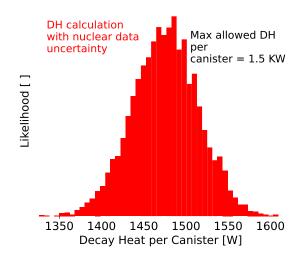


Uncertainty Quantification

- Both $\overrightarrow{N_0}$ & A have intrinsic uncertainties
- We want to evaluate the propagation of the uncertainties

 $\overrightarrow{N_0} \pm \Delta \overrightarrow{N_0} \to \overrightarrow{N} \pm \Delta \overrightarrow{N}$ $\mathbb{A} \pm \Delta \mathbb{A} \to \overrightarrow{N} \pm \Delta \overrightarrow{N}$

• Use Monte Carlo method & transfer learning



 \rightarrow

Solving the Bateman Equation

$$\frac{dN(t)}{dt} = \mathbb{A}\vec{N}(t), \quad \text{with} \quad \vec{N}(t=0) = \overrightarrow{N_0}$$

$$\vec{N}(t) = e^{\mathbb{A}t} \overrightarrow{N_0}$$

Analytic Solution of Linear Chains

Padé approximation

$$R(x) = rac{\sum_{j=0}^{m} a_j x^j}{1 + \sum_{k=1}^{n} b_k x^k}$$

• Chebyshev Rational Approximation Method (CRAM) $r_{k,k}(x) = \frac{p_k(x)}{q_k(x)}$, satisfying $\inf_{r_{k,k} \in \pi_{k,k}} \{ |r_{k,k}(x) - e^x| \}$

Numerical Methods for ODEs

• e.g. Runge-Kutta

=> PINNs (physics informed neural networks) for solving the Bateman Equation

Physics Informed Neural Networks

Theorem:¹ Let $\vec{N}(t)$ be a continuous function, $NN(t; \theta)$ a neural network

parameterized by θ , and ϵ a fixed error greater than zero, then:

 $\forall \vec{N} \in C^0, \forall \epsilon > 0, \exists \theta: \left\| \vec{N}(t) - NN(t; \theta) \right\| < \epsilon$

Physics Informed Neural Networks (PINNs) are NNs designed to solve differential equations.

$$\frac{d\vec{N}(t)}{dt} = \mathbb{A}\vec{N}(t), \quad \text{with} \quad \vec{N}(t=0) = \overrightarrow{N_0}$$

• To achieve this, we embed the Bateman equation in the loss function

•
$$\mathcal{L}(\theta) = \mathcal{L}_{physics}(\theta) + \mathcal{L}_{initial}(\theta) = \frac{1}{T} \sum_{i=0}^{T} \left\| \frac{dNN(t_i;\theta)}{dt} - ANN(t_i;\theta) \right\|_2^2 + \left\| NN(t=0;\theta) - \vec{N}_0 \right\|_2^2$$

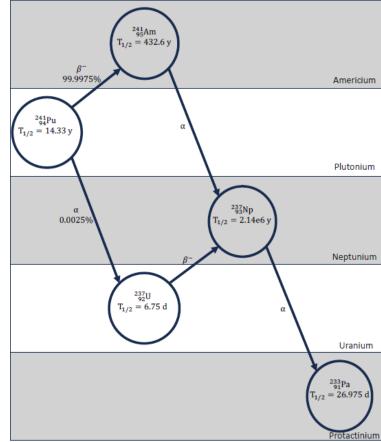
1: Hornik, Stinchcombe, White 1998

Plutonium Decay

- + $\mathbb{A} = 5 \ imes \ 5$ matrix for the decay for Plutonium-241
- $\kappa(\mathbb{A}) = 9 \times 10^9$
- Solve it for 128 days
- Compare the solution with CRAM over 10^4 time steps

• Use
$$L_2$$
 as our metric: $L_2 = \frac{1}{5} \sum_{i=1}^{n} L_2^{N_i}$
 $L_2^{N_i} = \frac{1}{10^4} \sum_{j=1}^{10^4} [N_i^{CRAM}(t_j) - N_i^{PINN}(t_j)]^2 \times 100$

$$\mathbb{A} = \begin{pmatrix} -2.2e-9 & 0 & 0 & 0 & 0 \\ 5.4e-14 & -1.7e-6 & 0 & 0 & 0 \\ 2.2e-9 & 0 & -7.3e-11 & 0 & 0 \\ 0 & 1.7e-6 & 7.3e-11 & -1.5e-14 & 0 \\ 0 & 0 & 0 & 1.5e-14 & -4.3e-7 \end{pmatrix}$$



PINN Approach: Vanilla Method

• Basic implementation of PINNs¹

Key concept: loss function (weighted sum of the two loss terms)

$$\mathcal{L}(\theta) = \frac{w_{physics}\mathcal{L}_{physics}(\theta) + w_{initial}\mathcal{L}_{initial}(\theta)}{w_{physics} + w_{initial}}$$

 The loss scales with the weights → transformation to simplify the tuning of the weights can be used

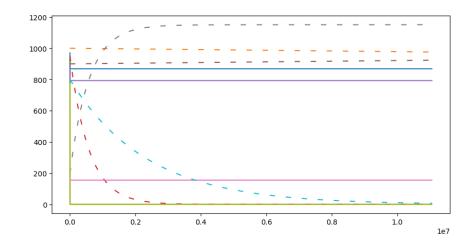
$$\mathcal{L}(\theta) = \frac{\mathcal{L}_{physics}(\theta) + w\mathcal{L}_{initial}(\theta)}{1 + w} \quad \text{where} \quad w = \frac{w_{initial}}{w_{physics}}$$

Comparison of the PINN Methods

Use Optuna to do the hyperparameters search

	Training time (s)	L ₂ (%)
Vanilla	1528.28	62.23

High training time, high L2 error and manual weight tuning!



CRAM – takes 13 seconds for 10000 time steps for 128 days

Hard Boundary Method

Problem with Vanilla loss: manual weight tuning

Solution: Rewrite constrained problem as un unconstrained one

Two different ansatz to unconstrain the problem:

Defined by Lagaris, Likas, Fotiadis 1998:

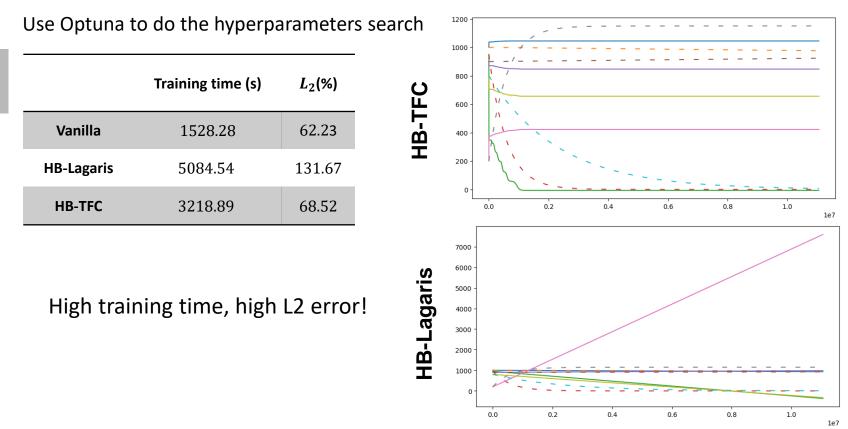
$$\vec{\psi}(t) \coloneqq \vec{N_0} + t\vec{NN}(t;\theta)$$

$$\Rightarrow \frac{d\vec{\psi}(t)}{dt} = A\vec{\psi}(t)$$
Theory of Functional Connections (TFC) by Mortari
2017, Mortari, Johnston and Smith 2019

$$\vec{\psi} \coloneqq \vec{NN}(t;\theta) + \vec{N_0} - \vec{NN}(t=0;\theta)$$

$$\Rightarrow \mathcal{L} = \mathcal{L}_{physics} = \frac{1}{T} \sum_{i=0}^{T} \left\| \frac{d\vec{\psi}(t_i;\theta)}{dt} - A\vec{\psi}(t_i;\theta) \right\|_2^2$$

Comparison of the PINN Methods



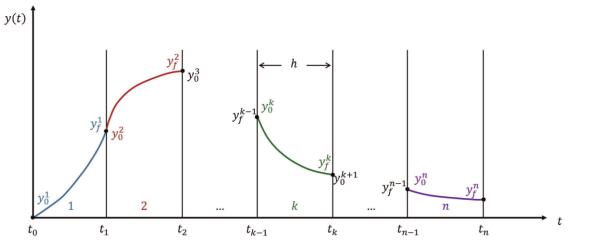
CRAM – takes 13 seconds for 10000 time steps for 128 days

Domain Decomposition Method

Problem: Long timescale - stiffness?

Key idea:

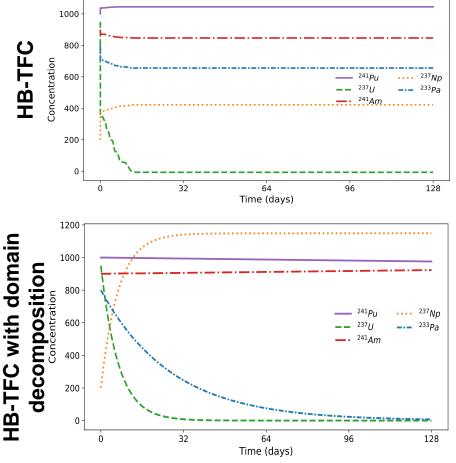
- Divide and conquer, like in Moseley, Markham, Nissen-Meyer 2023
- Use the output of the previous sub-domain as the initial condition for the next one, DeFlorio, Schiassi, Furfaro 2022
- Use transfer-learning from the previous sub-domain to the next one



Extending the Limit with Domain Decomposition

 Combine the HB-TFC with Domain Decomposition to solve the 128 days problem

Hyperparameters				
Num of sub-domains 1106				
Length sub-domain	2hr 46min			
Neurons per sub-domain	144			
Time steps per sub-domain	75552			
Results				
training time 1° sub-domain	39min 6 <i>s</i>			
average training time [2, 1106] sub-domains	15.6 <i>s</i> 5hr			
L ₂	0.1945 %			



Extreme Learning Machine Method

Problem with Vanilla loss and Hard boundary loss: NN training challenge and effort

t

w

 W_h

Solution: Huang, Zhu, Siew 2006: Extreme learning machine:

- Use single layer NN with random input weights and biases
- Compute output weights from closed-form solution

 $w_j \in U(-a, a), \ b_j \in U(-c, c)$

for
$$j = 1, 2, ..., h$$
 given $a, c \in \mathbb{R}^+$

$$\Rightarrow \overrightarrow{NN}(t; \vec{\theta}) = \sum_{j=1}^{n} \theta_{j} \sigma(w_{j}t + b_{j}) = \vec{\sigma} \cdot \vec{\theta}$$

$$\mathcal{L}(\vec{\theta}) = \frac{1}{T} \sum_{i=0}^{T} \left\| \frac{d\vec{\sigma}(t_i)}{dt} - \mathbb{A}\left[\vec{\sigma}(t_i) \cdot \vec{\theta} - \vec{\sigma}(t=0) \cdot \vec{\theta} + \vec{N_0}\right] \right\|_{2}^{2}$$

Solve the linear system
$$\Rightarrow \mathcal{J}\vec{\theta} = -\vec{\mathcal{L}}(\vec{0})$$

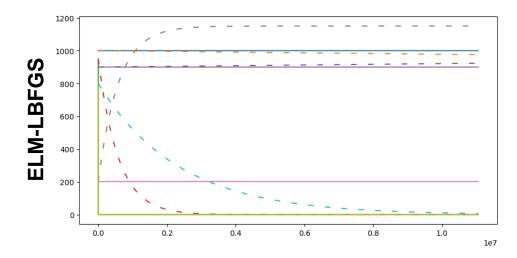
NN

 $\theta_4 \theta_1$

Comparison of the PINN Methods

Use Optuna to do the hyperparameters search

	Training time (s)	L ₂ (%)
Vanilla	1528.28	62.23
HB-Lagaris	5084.54	131.67
HB-TFC	3218.89	68.52
ELM	15.47	56.94
ELM-LBFGS	5.14	22.25



High L2 error!

CRAM – takes 13 seconds for 10000 time steps for 128 days

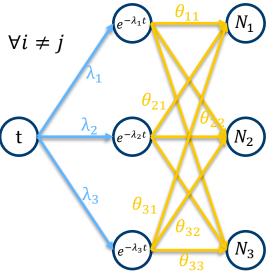
Assumption 1: if $\lambda_i \neq \lambda_j$ for $\lambda_i \in eigenvalues(\mathbb{A})$ п

Assumption 2: A is a decay matrix

$$\Rightarrow \vec{N}(t) = \sum_{i=1} \vec{a_i} e^{\lambda_i t}$$

Key ideas:

- Use a single layer NN
- Use as many neurons as nuclides (i.e. n = h) •
- Use the exponential activation function (i.e. $\sigma = exp$) .
- Use the eigenvalues as the input weights (i.e. $w_i = \lambda_i$) ٠
- Freeze the output weights such that they form a lower triangular • matrix
- Train only the output weights θ ٠

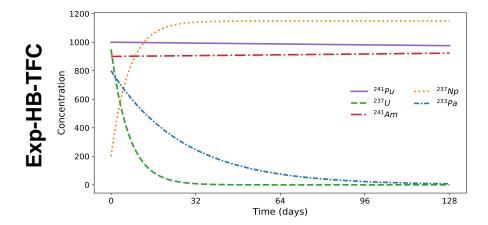


$$\implies \quad \overrightarrow{NN}(t;\vec{\theta}) = \sum_{i=1}^{n} \overrightarrow{\theta_{i}} e^{\lambda_{i}t}$$

Comparison of the PINN Methods

Use Optuna to do the hyperparameters search

	Training time (s)	L ₂ (%)
Vanilla	1528.28	62.23
HB-Lagaris	5084.54	131.67
HB-TFC	3218.89	68.52
ELM	15.47	56.94
ELM-LBFGS	5.14	184.93
Exp-Vanilla	19.72	0.000035
Exp-HB-TFC	21.18	0.0014

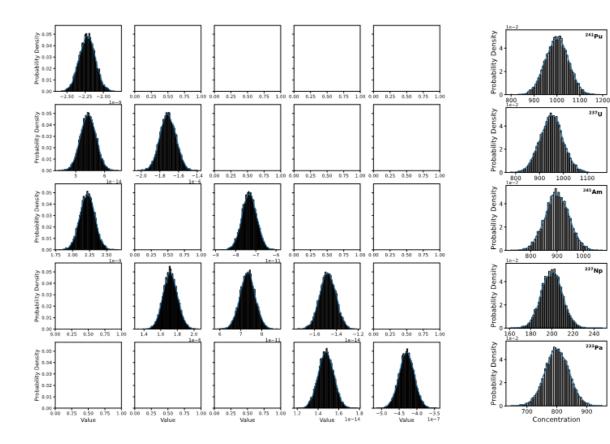


High training time!

CRAM – takes 13 seconds for 10000 time steps for 128 days

Uncertainty Quantification

Use Monte Carlo method $\rightarrow 10^4$ samples sampled from a Gaussian distribution with std = 5%

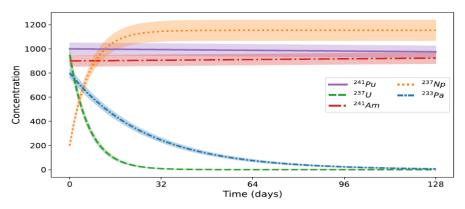


20

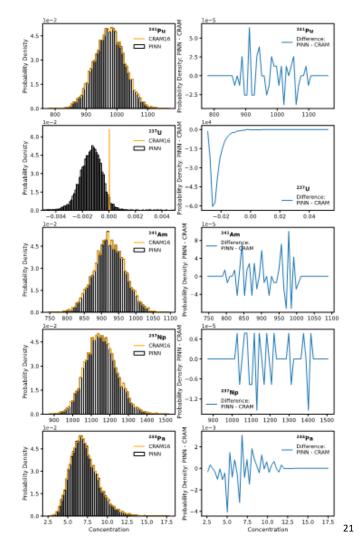
Uncertainty Quantification

- Not all final distributions are Gaussian
 ⇒ linear error propagation would fail
- Thanks to transfer learning we had a speed up of over 90%:
 - $_{\circ}~1^{st}$ sample \rightarrow training time = 21.7 s

$$\circ~2^{nd}-1000^{th}$$
 sample \rightarrow training time = 2.1 s



CRAM – takes 1 second for 128 time steps for 128 days per sample



Conclusions and Future Work

Conclusions:

- We implemented and tested PINN methods to solve the ²⁴¹Pu decay for 128 days,
 - $\,\circ\,$ HB-TFC combined with Domain Decomposition, with and $L_2=0.19\%$ using 1106 sub-domains solved the task, but was very slow
 - $\,\circ\,$ Exp-HB-TFC, Exp-Vanilla with an L $_2=0.0014\%$, L2 = 0.000035 $\,$ solved the task successfully, but still a bit slower than CRAM
- We performed UQ making use of transfer learning
 - \circ speeding up the training time by over 90% for each sample compared to train 1000 PINNs from scratch
 - o results are comparable to CRAM
 - PINN method is still slower than CRAM

Future work:

- Test the PINN methods with a larger matrix and a burnup matrix
- Alternative methods: Adaptive Weights, Use some known points as measurements points

We create knowledge – today for tomorrow

