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Introduction to PINNs



Solution of Partial Differential Equations (PDEs)

2024-02-23 4

Numerical Solution

• Approximation of the 
solution when it cannot be 
solved analytically.

• Common numerical 
methods:

• Finite Difference Method 
(FDM)

• Finite Volume Method 
(FVM)

• Finite Element Method 
(FEM)

Artificial Neural Networks 
to Solve PDEs

Analytical Solution

• Transparent and efficient 
solution.

• A few PDEs can be solved 
exactly.
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ANNs as PDE Solvers
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ANNs discoveries and proofs



ANNs vs. Physics-Informed NNs

• Data-driven models.

• Use of large quantities of data to make 
accurate predictions.

• The training requires either analytical or 
numerical solutions (supervised 
learning). 

• Complex and deep architectures.

• The solver does not use grids.

• Use information stored in PDEs and ODEs, 
adding a part of the network to calculate 
the residual.

• No need for prior solutions of the equation 
(unsupervised learning).

• Good approximations both with large and 
small datasets.

• Not necessarily complex structures for the 
network.

• Use automatic differentiation to calculate 
the derivatives of the network.
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Traditional ANNs Physics-Informed NNs



Physics-Informed Neural Networks (PINNs)
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𝑢𝑡 + 𝒟 𝑢 =  0,  𝑥 ∈ Ω, 𝑡 ∈ 0, 𝑛

• 𝑢(𝑥, 𝑡) is the latent hidden solution;

• 𝒟[∙] is a nonlinear differential operator;

• The domain Ω is a subset of ℝ𝑑 .

Forward problem

Given some fixed 
parameters 𝜆, what is the 

solution 𝑢(𝑥,𝑡)?

𝑢𝑡 + 𝒟 𝑢; 𝜆 =  0,  𝑥 ∈ Ω, 𝑡 ∈ 0, 𝑛

• 𝑢(𝑥, 𝑡) is the latent hidden solution;

• 𝒟[∙; 𝜆] is a nonlinear differential operator 
parametrized by 𝜆;

• The domain Ω is a subset of ℝ𝑑 .

Inverse problem

What are the best 
parameters 𝜆 of the PDE 
that describe the data?

[1] M. Raissi, P. Perdikaris, G.E. Karniadakis, ”Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear 
partial differential equations”.

Data-driven solutions to PDEs Data-driven discovery of PDEs



Physics-Informed Neural Networks (PINNs)
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Data-driven solutions to PDEs

𝑢𝑡 + 𝒟 𝑢 =  0,  𝑥 ∈ Ω, 𝑡 ∈ 0, 𝑛

Set the function:

𝑓 ≔ 𝑢𝑡 + 𝒟 𝑢

Minimize the mean squared error loss:

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑢 + 𝑀𝑆𝐸𝑓

𝑀𝑆𝐸𝑢 =
1

𝑁𝑢


𝑖=1

𝑁𝑢

ො𝑢 𝑥𝑢
𝑖 , 𝑡𝑢

𝑖 − 𝑢𝑖 2

𝑀𝑆𝐸𝑓 =
1

𝑁𝑓


𝑖=1

𝑁𝑓

𝑓 𝑥𝑓
𝑖 , 𝑡𝑓

𝑖 2
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Case Studies



Electric Power Systems 
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• The power grid is an example of electric power system.

• It is a system that provides electricity from the producers to the consumers.

• It consists of power stations, power transformers and transmission. 



Insulation System of Power Transformers
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A: Three-phase, core-type power transformer.

B: Transformer insulation oil and core.

C: Transformer core with corresponding insulation paper.



PINNs for Power Systems Components
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Power components

Data

Physics-Informed Neural Networks

Maintenance

Type of data: Top-oil 
temperature, ambient 
temperature, load factor, 
degree of polymerization

Models: Solution of PDE, 
Discovery of PDE
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Transformer Thermal Model

[1] F. Bragone, K. Morozovska, T. Laneryd, M. Luvisotto, and P. Hilber, “Physics-informed neural networks for modelling power 
transformer’s dynamic thermal behaviour”, Electric power systems research, vol. 211, p. 108447, 2022.
[2] T. Laneryd, F. Bragone, K. Morozovska, and M. Luvisotto, “Physics informed neural networks for power transformer dynamic thermal
modelling”, in 10th Vienna International Conference on Mathematical Modelling, pp. 1–6, 2022.
[3] O. W. Odeback, F. Bragone, T. Laneryd, M. Luvisotto, and K. Morozovska, “Physics-Informed Neural Networks for prediction of 
transformer's temperature distribution”, in IEEE ICMLA 2022.



Problem

Background
• An indicator of transformer thermal 

performance is the top oil temperature 
𝑇𝑜. 

• Top oil temperature is a function of:
• Ambient temperature 𝑇𝑎 ,
• Load factor 𝐾.

Conventional dynamic thermal modelling
• Parameters for rated conditions are determined 

empirically during the factory test. 

• Effects of 𝐾 and 𝑇𝑎 are included in the model.

• Model does not conserve energy.

• Model does not provide any temperature 
distribution.

𝐾, 𝑇𝑎 𝑇𝑜
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Transformer Thermal Modelling

𝜕2𝑇

𝜕𝑥2
+

𝑞

𝑘
=

1

𝛼

𝜕𝑇

𝜕𝑡

Where: 𝑞 = 𝑞 𝑥, 𝑡 = 𝑃0 + 𝑃𝐾 𝑡 − ℎ 𝑇 𝑥, 𝑡 − 𝑇𝑎 𝑡

Boundary conditions:

 T 0, 𝑡 = 𝑇𝑎 ,  𝑇 𝐻, 𝑡 = 𝑇𝑜
𝑞(𝑡)

uniform
heating

ℎ 𝑇 𝑥, 𝑡 − 𝑇𝑎

convective
heat transfer

k

𝑇(0,𝑡)  = 𝑇𝑎

𝑇(𝐻,𝑡)  = 𝑇𝑜
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Data:
𝑇𝑎 : ambient 
temperature 
𝐾 : load factor
𝑇𝑜 : top-oil temperature 

Known values:
𝑃𝐾 ~ 𝐾2 ∙ 𝜇 : load loss  
𝜇 : rated load loss
𝑃0 : no-load loss  
ℎ : heat transfer coefficient 
𝐻 : height



Model
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Heat diffusion equation in 1D

 𝜌𝑐𝑝𝑢𝑡 − 𝑘𝑢𝑥𝑥 − 𝑃0 + 𝑃𝐾 − ℎ 𝑢 − 𝑇𝑎 = 0

𝑢 0, 𝑡 = 𝑇𝑎 𝑢 𝐻, 𝑡 = 𝑇𝑜

Set the function:

𝑓 ≔ 𝜌𝑐𝑝𝑢𝑡 − 𝑘𝑢𝑥𝑥 − 𝑃0 + 𝑃𝐾 − ℎ 𝑢 − 𝑇𝑎

• 𝑢 is the temperature (𝐾),

• 𝑘 is the effective thermal conductivity (𝑊/𝑚 ∙ 𝐾),

• 𝑐𝑝 is the specific heat capacity (𝐽/𝑘𝑔 ∙ 𝐾),

• 𝜌 is the density (𝑘𝑔/𝑚3),

• 𝑃0 and 𝑃𝐾 are losses,

• ℎ is the heat transfer coefficient (𝑊/𝑚2 ∙ 𝐾),

• 𝑇𝑎 is the ambient temperature (𝐾),

• 𝑇𝑜 is the top-oil temperature (𝐾).



Model Structure 
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• Data:  𝑡,  𝑇𝑎,  𝐾 , 𝑇𝑜

• Neural network hyperparameters: 
▪ Hidden layers: 2, 4, 6

▪ Neurons: 10, 20, 50, 100

▪ Number of boundary training data 𝑁𝑢: 50, 100, 
150, 200

▪ Number of collocation points 𝑁𝑓 : 2000, 5000, 
10000

▪ Activation function: tanh

▪ Optimizer: L-BFGS-B

Test data to predict the model:
▪ Finite Volume Method (FVM)

▪ 50 data points for space 𝑥

▪ 100 data points for time 𝑡 

Hyperparameter Tuning Structure Test Data



Results
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𝐿2-error: 1.557e-2 𝐿2-error: 1.597e-2

Solution of the first 100 hours Prediction of the following 100 hours

Blue line: FVM solution
Red-dotted line: PINNs prediction

Blue line: FVM solution
Red-dotted line: PINNs prediction



Key Points
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• Understanding when PINN should be used instead of a numerical method. PINNs can leverage 
existing measurements.

• Measurements are used from a real transformer rather than synthetic data.

• Scaling of the equation: PINNs face difficulties in handling large parameters.

• Weights assigned to the individual loss functions. 

• PINNs as an ML prediction tool.
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Transformer Cellulose Degradation

F. Bragone, K. Oueslati, T. Laneryd, M. Luvisotto, and K. Morozovska, “Physics-Informed Neural Networks for Modeling Cellulose 
Degradation in Power Transformers”, in IEEE ICMLA 2022.



Degree of Polymerization
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Paper Condition Degree of Polymerization (DP)

New 1000 - 1200

Good 650 - 1000

Average 350 - 650

Aged < 350

Correlation between DP 
and paper condition

Insulation System of Power Transformers



Model
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Emsley equation

𝑑𝐷𝑃

𝑑𝑡
= −𝑘 ⋅ 𝐷𝑃2

𝑘 = 𝐴 ⋅ 𝑒
−

𝐸
𝑅𝑇

𝐷𝑃 0 = 1000

Set the function: 

𝑓 ≔
𝑑𝐷𝑃

𝑑𝑡
+ 𝐴 ⋅ 𝑒−

𝐸
𝑅𝑇 ⋅ 𝐷𝑃2

• 𝐷𝑃 is the degree of polymerization,

• 𝑇 is the temperature [K],
• 𝑅 is the molar gas constant [8,314 J/K mol],

• 𝐴 is the pre-exponential factor,

• 𝐸 is the activation energy [kJ/mol].



Results
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• The mean of the inferred 
parameter 𝐴 over 5 runs: 2.0803

• Real scaled value: 2.05

Stiff: using real values of the 
parameters 𝐴 and 𝐸
Non-stiff: using scaled values 
of the parameters 𝐴 and 𝐸

Loss function evolution
DP prediction



Key Points
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• Scaling of large parameters: stiff and non-stiff problem.

• PINNs are a powerful tool for the data-driven discovery of PDEs and ODEs.

• Using synthetic data rather than real data: collecting data in this field is not easy.
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Conclusions



Conclusions

• PINNs are neural networks that encode the physics expressed by ODEs and PDEs. 

• PINNs can be used both for solving and discovering ODEs/PDEs.

o Great potential to solve inverse problems.

• It can solve PDEs without a mesh.

• It calculates the derivatives of the network using automatic differentiation.

• Working with real-world cases:

o Thermal distribution of power transformers: data-driven solution of the heat diffusion equation.

o Cellulose degradation inside power transformers: data-driven discovery of the Emsley equation.

o Scaling of the equation.

o PINNs as a machine learning prediction tool.
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Thank you all for listening!
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