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Analytical Solution Numerical Solution Artificialgleural Nlc_:etworks
to Solve PDEs
« Transparent and efficient  Approximation of the
solution. solution when it cannot be —
« A few PDEs can be solved solved analytically.
exactly. - Common numerical
methods:
* Finite Difference Method
(FDM)
* Finite Volume Method
(FVM)

* Finite Element Method
(FEM)

2024-02-23 4
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(5% ANNSs as PDE Solvers
LS
Koch et al. Dissanayake and
(1986) Phan-Thien
(1994)
I Lee et al. [

Hopfield  Takeda et al.
(1982) (1986)

Hornik

Hopfield | (1991)
(1985)  Hornik et al.
(1989) Gobovic and
Zaghloul
=== ANNs as PDE solvers development (1993)

mmm== ANNSs discoveries and proofs
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=4/ ANNs vs. Physics-Informed NNs

&

Traditional ANNs

« Data-driven models.  Useinformation storedin PDEs and ODEs,
adding a part of the network to calculate
» Use of large quantities of data to make the residual.

accurate predictions.
* No need for prior solutions of the equation

* The training requires either analytical or (unsupervisedlearning).
numerical solutions (supervised
learning). « Good approximations both with large and

small datasets.
 Complexand deep architectures.
* Not necessarily complexstructures for the
* The solverdoes not use grids. network.

 Use automatic differentiationto calculate
the derivatives of the network.
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523 Physics-Informed Neural Networks (PINNs)

%}%‘9

Data-driven solutions to PDEs
ur+Dlul = 0, x € Q, t €[0,n]

* u(x,t) is the latent hidden solution;

* D[] is a nonlinear differential operator;

« The domain Q is a subset of R%.

¥

Forward problem

Given some fixed
parameters A, what is the
solution u(x,t)?

Data-driven discovery of PDEs
us +Dlu;A] = 0, x €, te[0,n]

u(x, t) is the latent hidden solution;

DJ-; A] is a nonlinear differential operator
parametrized by 1,

The domain Q is a subset of R?,

¥

Inverse problem

What are the best
parameters A of the PDE
that describe the data?

[1] M. Raissi, P. Perdikaris, G.E. Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations”.
2024-02-23
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53 Physics-Informed Neural Networks (PINNs)

Data-driven solutionsto PDEs

u;+Dlu]l =0, x€Q, te|0,n]

Set the function:

f =u; + Dlu]
Minimize the mean squared error loss:

MSE = MSE, + MSE;

Nu
1 . .
MSE, =~ ) [a(x,th) - u[
Yi=1

MSE = MSE, + MSE;

1 ..
MSEf :N_lef(x},t})lz Output

2024-02-23 8
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.. Electric Power Systems

kN i LN )
e VYAV A VN e VYAV LV N

Transformer Transformer

Power Station

Consumers

The power grid is an example of electric power system.

It is a system that provides electricity from the producers to the consumers.

It consists of power stations, power transformers and transmission.

2024-02-23



by

%’"""%

(52} Insulation System of Power Transformers

ees®

A B C

Bushlngs
Qil Cﬂnsewatnr
® Frame @ Copper Winding
. . . . () Paper Pressboard @ Iron Core
.‘-""'#O
Transformer
Tank
Transformer
0 Core

A: Three-phase, core-type power transformer.
B: Transformer insulation oil and core.

C: Transformer core with corresponding insulation paper.

2024-02-23 1



by

e%%&e

FKTHY

% VETENSKAP
28 OCH KONST 2%

Syt

PINNSs for Power Systems Components

Type of data: Top-oil
temperature, ambient
temperature, load factor,
degree of polymerization

2024-02-23
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Models: Solution of PDE,
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Transformer Thermal Model

[1] F. Bragone, K. Morozovska, T. Laneryd, M. Luvisotto, and P. Hilber, “Physics-informed neural networks for modelling power
transformer’s dynamic thermal behaviour”, Electric power systems research, vol. 211, p. 108447, 2022.

[2] T. Laneryd, F. Bragone, K. Morozovska, and M. Luvisotto, “Physics informed neural networks for power transformer dynamic thermal
modelling”, in 10th Vienna International Conference on Mathematical Modelling, pp. 1-6, 2022.

[3] O. W. Odeback, F. Bragone, T. Laneryd, M. Luvisotto, and K. Morozovska, “Physics-Informed Neural Networks for prediction of
transformer's temperature distribution”, in IEEE ICMLA 2022.
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Background Conventional dynamic thermal modelling
* An indicator of transformer thermal « Parameters for rated conditions are determined
performance is the top oil temperature empirically during the factory test.
T,.

, , , - Effects of K and T, are included inthe model.
* Top oil temperature is a function of:

* Ambient temperature T, « Model does not conserve energy.
« Load factor K.
* Model does not provide any temperature
distribution.
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62T+ q 10T T(Ht) =T,
0x2  k  a ot
| =
Where: q=q(x,t) = Py + Px(t) — h(T(x, ) — T,(t)) » B
Boundary conditions: = t =)

T(0,t) =T, T(H,t)=T, awy - K = h(T(x,0) —T,)
uniform convective
heating » l » heattrarEsfer

»" =
» =
Known values: Data: m =
Py ~K? - u :load loss T, : ambient 0 -7
u : rated load loss temperature e
Py : no-load loss K : load factor
h : heat transfer coefficient T, : top-oil temperature
H : height

2024-02-23
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{1 Model

T
Heat diffusion equationin 1D
pcyur — kugy — (Po+ Px— h(u — T)) = 0

u(0,t) =T, u(Ht)=T,

Set the function:

Ve
W
()

|
.
.
i
f = pcpus — Ky, — (Py + Py — h(u — T,)) | . .)‘»» . ” f = peye = kitza
| : A0 ’ ~(Po+ Py — (i~ )
« uis the temperature (K), i 74 E - \
* ks the effective thermal conductivity (W /m - K), ! o ‘ : ! / |
* ¢, is the specific heat capacity (J/kg - K), o — :ﬂi _____________________ |
* pisthedensity (kg/m3), § \\ /
P, and Py are losses, @ MBSE = MBE. + MSEy
 his the heat transfer coefficient (W /m? - K), Output Yes

« T, is the ambient temperature (K),

« T, is the top-oil temperature (K).
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5i: Model Structure

Hyperparameter Tuning

- Data:t, T, K, T,
* Neural network hyperparameters:

Hidden layers: 2, 4, 6
Neurons: 10, 20, 50, 100

Number of boundary training data N,,: 50, 100,

150, 200

Number of collocation points N¢ : 2000, 5000,

10000
Activation function: tanh
Optimizer: L-BFGS-B

Structure Test Data
Test data to predict the model:
» Finite Volume Method (FVM)

= 50 data points for space x

= 100 data points for time t
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(5% Results
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Solution of the first 100 hours

upym(x, t), FVM solution

1.0
40
20
0
0 20 40 60 80
t
u(x, t), Predicted solution
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t
t= 25 t=50 t=75
30
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=101 = =20
= [ =
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0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X X X

Blue line: FVM solution
Red-dotted line: PINNs prediction

L,-error: 1.557e-2
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Prediction of the following 100 hours

urym(x, t), FVM solution
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Blue line: FVM solution
Red-dotted line: PINNs prediction

L,-error: 1.597e-2
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(5 Key Points
Vot

* Understanding when PINN should be used instead of a numerical method. PINNs can leverage
existing measurements.

« Measurements are used from a real transformer rather than synthetic data.
» Scaling of the equation: PINNs face difficulties in handling large parameters.
* Weights assigned to the individual loss functions.

 PINNsas an ML prediction tool.
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Transformer Cellulose Degradation

F. Bragone, K. Oueslati, T. Laneryd, M. Luvisotto, and K. Morozovska, “Physics-Informed Neural Networks for Modeling Cellulose
Degradation in Power Transformers”, in IEEE ICMLA 2022.
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Insulation System of Power Transformers

Correlation between DP
and paper condition

Paper Condition | Degree of Polymerization (DP)

@® Frame @ Copper Winding
() Paper Pressboard @ Iron Core

New 1000 - 1200
Good
Average 350-650

Transformer
Core

Aged <350

2024-02-23 21
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Emsley equation ODE(A, E)
_________________________ :
dDP , |
—— = —k-DP |
dt i |
k=A-e RT |
DP(0) = 1000 :
|
|
Set the function: !
dDP _E |
fi=-——+A-e RT-DP . .
dt I

 DP isthe degree of polymerization, MSE = MSE, + MSEu, + MSE;,

« T isthe temperature [K],

* R isthe molar gas constant [8,314 J/K mol],
» Aisthe pre-exponential factor,

« E isthe activation energy [kJ/mol].

2024-02-23 22
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{XTH: Results

1072
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Total loss
e

1073
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Loss function evolution

——————————
7

epochs

The mean of the inferred
parameter A over 5 runs: 2.0803
Real scaled value: 2.05
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» Scaling of large parameters: stiff and non-stiff problem.

* PINNsare a powerful tool for the data-driven discovery of PDEs and ODEs.

« Using synthetic data rather than real data: collecting data in this field is not easy.



Conclusions

2024-02-23
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PINNSs are neural networks that encode the physics expressed by ODEs and PDEs.

PINNs can be used both for solving and discovering ODEs/PDEs.

o Great potential to solve inverse problems.

It can solve PDEs without a mesh.

It calculates the derivatives of the network using automatic differentiation.

Working with real-world cases:
o Thermal distribution of power transformers: data-driven solution of the heat diffusion equation.
o Cellulose degradation inside power transformers: data-driven discovery of the Emsley equation.
o Scaling of the equation.

o PINNsas a machine learning prediction tool.
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