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Let us consider a regularized NMF problem in the form

minimize D1 (X, WH) + u||H||1
subject to W e Myxr(R*) , H e Mgxn (R")

which is tackled by alternate optimization of the factors

Hk+1) = f(X W(k), H(l\)) W(AH) =g(X; W(I\), H(k+]))
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which is tackled by alternate optimization of the factors
Hk+1) = f(X W(k), H(l\)) W(AH) =g(X; W(I\), H(k+]))

By interpreting the iterative update scheme as a neural network, where H**1) is the
output of the k-th layer given the input H¥) and activation function f, Deep-NMF unfolds
the iterations and unties the bases across layers: the result is a trainable neural network with
parameters {W )}, o k.
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Q: Why do we care about Deep-NMF? Why is it useful?
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Q: Why do we care about Deep-NMF? Why is it useful?

A: It provides a nonnegative, additive decomposition of X
~ WK K) _ w(K) 7 (K) (K) g7(K) _
X2 wRHE =wOHS + WO HT =S+ N

where W — [VV;K) W[{/K)] HE = [Hgk)‘ H,(VK)‘ ]‘r
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Since the weights W*) must remain nonnegative to retain interpretability, the backpropa-
gation algorithm is non-conventional.

Indeed, the weights are updated with:

[Vwm 8] _
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Since the weights W*) must remain nonnegative to retain interpretability, the backpropa-
gation algorithm is non-conventional.

Indeed, the weights are updated with:

[Vwm 8] _
lVWm SL

Hence the need to split the gradients into positive and negative parts and back-propagate
both quantities:

WU") = W(A) °
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Physics-Aware Deep-NMF oG Stoy
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The Deep-NMF algorithm and architecture was originally designed for speech enhancement,
which effectively makes it ill-suited to deal with datasets stemming from physico-mathematical
models, where the clean components S have strong intrinsic structure that should be preserved
by the network.

We proposed several physics-aware enhance-
ments:
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DI PADOVA

The Deep-NMF algorithm and architecture was originally designed for speech enhancement,
which effectively makes it ill-suited to deal with datasets stemming from physico-mathematical

models, where the clean components S have strong intrinsic structure that should be preserved
by the network.

We proposed several physics-aware enhance-
ments:

m Creation of an optimal discriminative dic-
tionary W(K) = W (not modified by back- Discrmintiy-nitiatzed optima dtinary W'
propagation) which enables the recogni-
tion of physically-characterized clean com-
ponents;
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The Deep-NMF algorithm and architecture was originally designed for speech enhancement,
which effectively makes it ill-suited to deal with datasets stemming from physico-mathematical
models, where the clean components S have strong intrinsic structure that should be preserved
by the network.

We proposed several physics-aware enhance-
ments:

m Embedding of the (time-)correlation be-
tween consecutive columns of X by em-
ploying block-Hankel weights W (%) 1 ™
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The Deep-NMF algorithm and architecture was originally designed for speech enhancement,
which effectively makes it ill-suited to deal with datasets stemming from physico-mathematical
models, where the clean components S have strong intrinsic structure that should be preserved
by the network.

We proposed several physics-aware enhance-
ments:

m Preservation of the block-Hankel structure
by projection, thus modifying both the
forward- and back-propagation;
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The Deep-NMF algorithm and architecture was originally designed for speech enhancement,
which effectively makes it ill-suited to deal with datasets stemming from physico-mathematical
models, where the clean components S have strong intrinsic structure that should be preserved
by the network.

We proposed several physics-aware enhance-
ments:

Penalty term

Penalty hyperparameter /
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Problem-specific term
(Wiener filter)

m Construction of a suitable loss function
for the training process, enforcing an
accurate reconstruction of the clean
component.
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Example 1: Hits detection on synthetic data Sl s
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Example 2: Hits detection on real data {5 o s
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Mixture Spectrogram: X
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