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Deep-NMF: Introduction
Let us consider a regularized NMF problem in the form

minimize 𝐷1 (𝑋,𝑊𝐻 ) + 𝜇∥𝐻 ∥1
subject to 𝑊 ∈ M𝑀×𝑅 (R+ ) , 𝐻 ∈ M𝑅×𝑁 (R+ )

which is tackled by alternate optimization of the factors

𝐻 (𝑘+1) = 𝑓 (𝑋;𝑊 (𝑘) , 𝐻 (𝑘) ) 𝑊 (𝑘+1) = 𝑔 (𝑋;𝑊 (𝑘) , 𝐻 (𝑘+1) )

By interpreting the iterative update scheme as a neural network, where 𝐻 (𝑘+1) is the
output of the 𝑘-th layer given the input 𝐻 (𝑘) and activation function 𝑓 , Deep-NMF unfolds
the iterations and unties the bases across layers: the result is a trainable neural network with
parameters {𝑊 (𝑘) }𝑘 =0, ..., 𝐾 .

𝐻 (0) 𝐻 (1) · · · 𝐻 (𝐾−1) 𝐻 (𝐾 ) E(𝑊 (𝐾 ) , 𝐻 (𝐾 ) )

𝑋 · · ·

𝑊 (0) 𝑊 (1) 𝑊 (𝐾−2) 𝑊 (𝐾−1)

Q: Why do we care about Deep-NMF? Why is it useful?

A: It provides a nonnegative, additive decomposition of 𝑋

𝑋 ≈ 𝑊 (𝐾 )𝐻 (𝐾 ) = 𝑊
(𝐾 )
𝑆

𝐻
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(𝐾 )
𝑁

= 𝑆 + 𝑁

where
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]⊤
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Deep-NMF: A quick look at the backpropagation algorithm

Since the weights 𝑊 (𝑘) must remain nonnegative to retain interpretability, the backpropa-
gation algorithm is non-conventional.

Indeed, the weights are updated with:

𝑊 (𝑘) ⇐ 𝑊 (𝑘) ◦
[
∇𝑊 (𝑘) E

]
−[

∇𝑊 (𝑘) E
]
+

Hence the need to split the gradients into positive and negative parts and back-propagate
both quantities:[

𝜕E
𝜕𝑊

(𝑘)
𝑛,𝑟

]
+

=

∑︁
𝑚,𝑟

©«
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Physics-Aware Deep-NMF

The Deep-NMF algorithm and architecture was originally designed for speech enhancement,
which effectively makes it ill-suited to deal with datasets stemming from physico-mathematical
models, where the clean components 𝑆 have strong intrinsic structure that should be preserved
by the network.

We proposed several physics-aware enhance-
ments:

Creation of an optimal discriminative dic-
tionary 𝑊 (𝐾 ) = �̂� (not modified by back-
propagation) which enables the recogni-
tion of physically-characterized clean com-
ponents;

Embedding of the (time-)correlation be-
tween consecutive columns of 𝑋 by em-
ploying block-Hankel weights 𝑊 (𝑘) ;

Preservation of the block-Hankel structure
by projection, thus modifying both the
forward- and back-propagation;

Construction of a suitable loss function
for the training process, enforcing an
accurate reconstruction of the clean
component.
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Example 1: Hits detection on synthetic data
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Example 2: Hits detection on real data
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