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Introduction

Peridynamic models
Basic concepts:
• The state of a system at any

point depends on the state in a
neighborhood of points

• Interactions occur at finite
distance, even without contact

• Solutions can be
non-differentiable, singular,
discontinuous

Advantages:
• Multiscale behaviors
• Cracks and fractures
• Predictive capability
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Introduction

Peridynamic Model
We consider the following PDE in linear peridynamic1 formulation:

∂ttθ(x , t) =

∫
Ω
C (|x − y |)[θ(x , t)− θ(y , t)] dy ,

which describes the dynamic response of an infinite bar composed of a
linear microelastic material.

• The general initial-value problem
is well-posed2

• long-range forces → solution
showing a dispersive behavior

• nonnegative even kernel ⇝ the
regularity of the solution

• nonlocal operator in the
integrand ⇝ deformation of θ

1Silling 2000.
2Emmrich and Puhst 2015.
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Introduction

Nonlocal operator

Lθ(x) =
∫
Ω
C (|x − y |)[θ(x , t)− θ(y , t)] dy

• integral form: allows
long-range forces and reduce
regularity requirements

• Lθ → ∆θ in a suitable sense
for vanishing nonlocality ⇝
∂ttθ(x , t)− ∂xxθ(x , t) = 03

• the kernel C (|x − y |) is
application dependent

• δ is the horizon and measures
the nonlocality

3Oterkus, Madenci, and Agwai 2014.
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Introduction

Peridynamic formulation: kernel properties
In order to maintain the consistency with Newton’s third law, the
micromodulus function must be even:

C (ξ) = C (−ξ) , ξ ∈ R.

Moreover, due to the dispersive effects C must be such that4∫
R
(1 − cos(kξ))C (ξ) dξ > 0,

for every wave number k ̸= 0.
Additionally, since the interaction between two material particles should
become negligible as the distance between particles become very large, we
can assume that

lim
ξ→±∞

C (ξ) = 0.

4Weckner and Abeyaratne 2005.
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Introduction

Aim

• Solving the inverse problem to learn the shape of the kernel function
C by a PINN

→ careful selection of activation functions in all the layers
→ correct interaction with kernel initializers
→ geometric knowledge relative to the data
→ the peridynamic operator is bounded on a compact

support [−δ, δ]
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Introduction

Kernels
We will focus on a Gauss-type kernel5 of the form

C (ξ) = λe−µξ2
, λ, µ > 0.

and on a distributed kernel function with shape6

C (ξ) =

{
|ξ|−λ+δ

δ , |ξ| ≥ λ− δ

0, |ξ| < λ− δ

proposed in nonlocal unsaturated soil
model contexts.
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5Weckner and Abeyaratne 2005.
6Berardi, Difonzo, and Pellegrino 2023.
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Introduction

Radial Basis Functions

As activation function for the first layer, whose input is x , a Radial Basis
Function (RBF) is selected. An RBF can be defined as

ϕ(x) = ϕ(∥x − c∥),

where ϕ is the RBF function, x is the input to the RBF, c is the center or
prototype point, ∥x − c∥ represents the distance between x and c . When
used as activation functions in neural networks, they give rise to Radial
Basis Function Neural Networks (RBFNNs)7.

7Fasshauer 2007.
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Introduction

Radial Basis Functions

We have considered two families of
RBFs given by
• Inverse quadratic:

σrbf(x) :=
ρ

1 + γ(x − µ)2

• Multiquadric:

σrbf(x) := ρ
√

1 + γ(x − µ)2

⇝ ρ, γ, µ > 0 could be trainable.
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Inverse Problem

RBF-iPINN

• Spatial NN and Temporal NN in series
Spatial NN: the spatial variable x is the sole input of a hidden layer

of 20 neurons, activated by an RBF, followed by 8 layers
with 20 neurons each, activated by ReLu function; kernel
initializer of type glorot_normal; nonnegative kernel
constraint and a kernel regularizer of type l1_l2, with
weights l1 = l2 = 0.01

Concatenation: The output of this sequence of layers is then
concatenated with t, providing the input for

Temporal NN: 8 layers, each containing 20 neurons and activated by a
sigmoid function; random_uniform kernel initializer.

• the overall output of the RBF-iPINN is returned as an array that lists
two tensors, the first carrying the kernel C , and the other carrying the
dependent variable θ.
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Inverse Problem

RBF-iPINN structure
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Figure: ReLU and sigmoid activated hidden layers = 8, neurons per layer = 20.
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Inverse Problem

RBF-iPINN

Remark
Let us notice that selecting the ReLU activation function for all the layers of
the architecture could result in a loss of compatibility potential of the
PINN.8 This consideration, also supported by several experiments, justifies
the choice of the sigmoid activation function in the temporal NN. We
witness that, however, other selections than sigmoid function do not
perform satisfactorily enough.

8Leng and Thiyagalingam 2023.
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Inverse Problem

Loss function

pde loss: Lpde := ∥P(f )− 0∗∥2,

data fitting loss: Ldata := ∥f − f ∗∥2,

symmetry loss: Lsym := ∥f (x , t)− f (−x , t)∥1 → small errors.

Then we consider a weighted sum of the contributions given above as

L = wpdeLpde + wdataLdata + wsymLsym,

where
wpde = 2, wdata = 1, wsym = 2.
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Inverse Problem

Learning rate

The learning rate α has been selected to be decreasing with the epoch in a
quadratic way. More precisely, we implemented the following scheduler:

α0 = 10−4, α1 = 0.7α0

αi =

(
1 −

(
i

N

)2
)
α0 +

(
i

N

)2

α1, i = 0, . . . ,N,

where N is the number of epochs chosen for the training. Thus, starting
with a learning rate of α0 at epoch 0, it progressively gets reduced over the
epochs, until it reaches the value α1 at epoch N.
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Outcomes

Experiment setup

A main feature of the numerical computation is the evaluation of the
integral∫

R
C(|x − y |)[θ(x , t)− θ(y , t)]dy = θ(x , t)

∫
R
C(|x − y |)dy −

∫
R
C(|x − y |)θ(y , t)dy

= θ(x , t)

∫
R
C(|x − y |)dy − C(|x |) ∗ θ(x , t),

where the second term in the right-hand side above is the convolution
product between the kernel C and the unknown function θ. It has to be
noticed here that the kernel function C is compactly supported, with
support [−δ, δ].
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Outcomes

Experiment setup

Now, in order to numerically compute such convolution product, let [0,X ]
be the space interval and let 0 < x1 < x2 < . . . < xN−1 < xN = X be the
uniform spatial discretization of the interval [0,X ] with stepsize h > 0. the
convolution product above can be numerically treated by determining the
exact number of components in the vector [C (xi )]

n
i=1 so that only points xi

such that
|xi − xj | < δ, i , j = 1, . . . ,N,

come into play when computing C (∥x∥) ∗ θ(x , t). Since xi = i · h, then we
deduce that the only indices involved in the convolution product are
i , j = 1, . . . ,N such that

|i − j | < δ

h
.
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Outcomes

Experiment 1
Here we consider a dataset with t ∈ [0, 20], x ∈ [−10, 10] with spatial
stepsize h = 2 · 10−1 and δ = 10, and for which the analytical expression of
the kernel is

C (x) =
3
5
|x |.

(a) γ = 0.09 (b) γ = 0.05
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Outcomes

Experiment 2
Here we consider a dataset with t ∈ [0, 20], x ∈ [−10, 10] with spatial
stepsize h = 2 · 10−1 and δ = 1, with kernel

C (x) =


δ−x−10

δ , x ≤ −10 + δ,

0, −10 + δ < x ≤ 10 − δ,
δ+x−10

δ , x > 10 − δ.

(a) γ = 0.09 (b) γ = 0.05
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Outcomes

Experiment 3
Here we consider a dataset with t ∈ [0, 20], x ∈ [−10, 10] with spatial
stepsize h = 2 · 10−1 and δ = 1, with kernel

C (x) =
4√
π
e−x2

.

Hyperparameters tuning:
• l1_l2= 0.01, 0.1;
• σrbf(x) =

ρ
1+(x−µ)2

;

• Ldata = ∥f − f ∗∥∞.
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Outcomes

Experiment 3
Therefore, we have performed a further analysis by implementing a
standard inverse PINN to learn parameters γ∗ and σ∗ in

C ∗(x) := γ∗e−σ∗x2
.

Initial guesses: γ∗ = 3, σ∗ = 0.5.
Hyperparameter tuning:
• 1000 epochs
• same learning rate scheduler

with α0 = 10−3

Results:
• learned γ∗ = 2.3302033, true

4√
π
≈ 2.2567583

• learned σ∗ = 1.0218402, true 1
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Conclusions

Conclusions

• peridynamic formulation of a classical wave equation
• computation of the kernel function responsible for the nonlocal

behavior of the model
• two serialized PINNs (spatial and temporal)
• Radial Basis Function (RBF) as activation function for the spatial NN
¿ optimal control problems?
¿ more complicated peridynamic models via PINNs and Radial Basis

Functions, exploiting their inherently symmetric nature?
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THANK YOU
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