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AC-OPF Motivation

= AC-OPF = Alternating Current Optimal Power Flow

= Characteristics of electricity transmission:
o 100% reliable

o Demand = Load

o Hard to store

= Consequence:

o Grid operator has to figure out how to set up generators to meet the demand every 15
minutes




Problem setup

= Overview of the problem:

o Non-convex
o Highly Non-Llinear

= Common way to solve the problem: small-angle approximation

o Relaxation to DC model

= Non-linear solvers exist - interior point method

o Long computation time for large grids - Too long for daily grid operation!

= Solution: Machine-learning based approach




Problem setup

= The OPF problem:

@)

System of generators, loads, lines and

transformers

@)

@)

Demand profile as an input - (P4; Q4)
How do you set up generators to meet

demand

with the lowest cost?

- AC OPF - output:

@)

@)

@)

@)

Song., Y., Hill, D. J, & Liu, T. (2015, September). Small-disturbance angle stability analysis of microgrids: A graph theory viewpoint.

Generated active power - P,
Generated reactive power - Q4
Voltages at each node -V
Angle at each node - 6

In 2015 IEEE Conference on Control Applications (CCA) (pp. 201-206). IEEE.
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OPF model

Objective function : min C:(Pr ;
J 1V 1 PG,i,QG,i,l?)i,ei,'iGV Z z( G,z)
eV
r .
Power Flow equations : pij - gij(Tijv%g,,; vivi(biﬂ";m(eii) + gijC.OS(—eij))
qz'j — (_gij + 2 )(—Tij’vi) AL (gijsm(eij) — bijCOS(Hij))

Poi—Ppi—gt, =3 .. I
Nodal Balance:{ Gt D.i = sh Z(’J)GEPZJ

QG,z’ - QD,i + bih = Z(z’j)eE quj
Bus voltage magnitude limits : Vpmin,i < Vi < Umaz,iVi €V
Bus active power limits : Pg min,i < Pa,i < PG maz,iVt €V
Bus reactive power limits : Q¢ min.i < Qc,i < QG,maz,iVi €V

| Transmission limits : (pfj)2 + (quj)2 < Smaz,ij .




Graph Neural Networks (GNNSs)

- Class of learners designed to process graphs (e.g. networks, molecules) and
perform graph/node classification, regression, generation etc.

- Message Passing Graph Neural Networks (MP-GNNSs): learning phase carried
on by an updating scheme for each node:

h* = COMBINE(hF~* AGGREGATE({{h% ", u € ne[v]}})

7%

1. Sample neighborhood

2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
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PI-GNNs

= Combination of Physics Informed Neural Networks (PINNs) and GNNs
= The network is “informed” of the underlying physics in the residual term
of the loss function

Graph neural network

@@@_
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Standard Physically-
loss T informed loss|

Model training

Fung, V., Ganesh, P., & Sumpter, B. G. (2022).
Physically informed machine learning prediction of electronic density of states. Chemistry of Materials, 34(11), 4848-4855.




Overview of the model

Feedback

|

Input data GNN Architecture Physics-Informed
(Pp,Qp) (P;,Q;,v,0) = fenn(Pp, Qp) Loss computation
‘ T 7'y

Graph Structure

Physics




Components of the physics-informed loss

Name Type of Constraint Mathematical Formulation
Cost loss Objective function | Cost =) .y Cpi(Pci) + 2 ;«n C0.i(Qa.i)

QG,’L’ - QD,i - Z(ij)eE quj =0
Umin,i < Ui < Umax,i VieV

Equality loss Equality constraint

Inequality loss | Inequality constraint PG min,i < Pgi < Pogmax,i Vi€V
QG,min,i < QG,’i < QG,max,i
Flow loss Inequality constraint (P{j)2 + (q,fj)2 < Smax,ij

Plate loss Inequality constraint YwenPci—> ;<nPpi>0




Training: Penalthy method

=2 General constrained Optimization problem:
min f(x)
X
gix)<0,i=1,..,1
h](X) = 0,] = 1, ,]
—» Conversion into a sequence of unconstrained problems with varying coefficients
- should converge to original constrained problem

subject to: [

min £ (x) + pf Tiey ¢(9:00) + 1 Tjey 17 (1)

With: - ¢(g;(x)) = max (O,gi2 (x))

M = My B Hh = - N
3 k1 ok 0 The penalty coefficients at the k-th iteration
Mg~ = kgBg g = qg

Lu, L, Pestourie, R, Yao, W., Wang, Z., Verdugo, F., & Johnson, S. G. (2021). Physics-informed neural networks with hard constraints for inverse design. SIAM
Journal on Scientific Computing, 43(6), B1105-B1132.
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Training: Augmented Lagrangian (AL) method

= Addition of extra terms to make the problem locally convex

min fGO) + > e(giC0) + 1k Y RGO+ ) 2ig100) + ) 2k ()

I<L j<J I<L j<J

= AL coefficient associated to each constraint.
> Agit = Agu+2u591(x")

= 2= K2l (xK)

=» Loss-dependent value - Stagnhant loss component will increase proportionally

Lu, L, Pestourie, R, Yao, W., Wang, Z., Verdugo, F., & Johnson, S. G. (2021). Physics-informed neural networks with hard constraints for inverse design. SIAM
Journal on Scientific Computing, 43(6), B1105-B1132.
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Example of AL method in action
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IEEE benchmark cases

=» (Grid systems with loads, generator, empty

buses, transmission lines, transformers, ©

shunt elements

=> Benchmark cases used in literature
=» (Cases used:

o (Case9

o (Case9Q a

o Case24 ieee rts
o Case30
o (Casell8

SOUTH




Training Regiment

=» Initial testing: M = 1 input
o Easy validation with 10000
solver result 1000

o Necessary forM > 1

100

Equality loss value [MW]
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Evolution of equality loss (nodal balance) at each epoch




Evaluationresults- M =1

Cost relative differences [%]
1,0E+01

Case Eq Loss difference [MW]
Case9 0.00010
Case9Q 0.0015

o Case9Q tuned 0.00079

L0E02 Case24 -6.58
Case30 -0.0054

L0E-08 Case30Q 0.012

Case9 Case9Q Case9Q tuned Case24 Case30 Case30Q

1,0E+00




Evaluationresults - M > 1

=» Training with M=20 - varying demand profile
= Test for CasegQ (tuned)

Loss Component Absolute Loss  Relative Loss [%]
Average Equality Loss [MW] 1.50 0.48
Average Cost Difference [$] 10.52 0.44




Trade-off between cost and PF equations
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Conclusions and Future works

= PI-GNNs performances comparable to that of modern solvers
= Great flexibility (no need to adapt hyperparameters)
Future directions:

= Full sensitivity analysis (optimal architecture & hyperparameters)

- Extension to connected sequences of demands (time-series)
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