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AC-OPF Motivation
➜ AC–OPF  = Alternating Current Optimal Power Flow

➜ Characteristics of electricity transmission:
○ 100% reliable
○ Demand = Load
○ Hard to store 

➜ Consequence: 
○ Grid operator has to figure out how to set up generators to meet the demand every 15 
minutes
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Problem setup
➜ Overview of the problem:
○ Non-convex
○ Highly Non-linear

➜ Common way to solve the problem: small-angle approximation
○ Relaxation to DC model

➜ Non-linear solvers exist - interior point method
○ Long computation time for large grids à Too long for daily grid operation!

➜ Solution: Machine-learning based approach
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Problem setup
➜ The OPF problem: 
○ System of generators, loads, lines and 
transformers
○ Demand profile as an input - 𝑷𝒅; 𝑸𝒅
○ How do you set up generators to meet 
demand 

with the lowest cost?

➜ AC OPF – output:
○ Generated active power - 𝑷𝒈
○ Generated reactive power - 𝑸𝒈
○ Voltages at each node - 𝑽
○ Angle at each node - 𝜽
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IEEE – Case9 bus system

Song, Y., Hill, D. J., & Liu, T. (2015, September). Small-disturbance angle stability analysis of microgrids: A graph theory viewpoint. 
In 2015 IEEE Conference on Control Applications (CCA) (pp. 201-206). IEEE.



OPF model
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Graph Neural Networks (GNNs)
- Class of learners designed to process graphs (e.g. networks, molecules) and 

perform graph/node classification, regression, generation etc.
- Message Passing Graph Neural Networks (MP-GNNs): learning phase carried 

on by an updating scheme for each node:

Hamilton, W., Ying, Z., & Leskovec, J. (2017).  Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
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PI-GNNs
➜ Combination of Physics Informed Neural Networks (PINNs) and GNNs
➜ The network is “informed” of the underlying physics in the residual term 

of the loss function
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Fung, V., Ganesh, P., & Sumpter, B. G. (2022). 
Physically informed machine learning prediction of electronic density of states. Chemistry of Materials, 34(11), 4848-4855.



Overview of the model
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Components of the physics-informed loss
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Training: Penalthy method
➜ General constrained Optimization problem:

min
#
𝑓 𝑥

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 4
𝑔$ 𝑥 ≤ 0, 𝑖 = 1,… , 𝐼
ℎ% 𝑥 = 0, 𝑗 = 1,… , 𝐽

➜ Conversion into a sequence of unconstrained problems with varying coefficients 
à should converge to original constrained problem

min
#
𝑓 𝑥 + 𝜇&' ∑$() 𝑐 𝑔$ 𝑥 + 𝜇%' ∑%(* ℎ%+ 𝑥

With: - 𝑐 𝑔$ 𝑥 = max 0, 𝑔$+ 𝑥

- 4
𝜇,'-. = 𝜇,'β/ , 𝜇,0 = 𝛼,
𝜇&'-. = 𝜇&'β1, 𝜇&0 = 𝛼&

The penalty coefficients at the 𝑘-th iteration
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Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., & Johnson, S. G. (2021). Physics-informed neural networks with hard constraints for inverse design. SIAM 
Journal on Scientific Computing, 43(6), B1105-B1132.



Training: Augmented Lagrangian (AL) method

➜ Addition of extra terms to make the problem locally convex

min
!
𝑓 𝑥 + 𝜇"#(

$%&

𝑐 𝑔' 𝑥 + 𝜇(#(
)%*

ℎ)+ 𝑥 +(
$%&

𝜆",$# 𝑔$ 𝑥 + (
)%*

𝜆(,)
# ℎ) 𝑥

➜ AL coefficient associated to each constraint.
➜ 𝜆",$#-. = 𝜆",$# + 2𝜇"#𝑔$ 𝑥#

➜ 𝜆(,)#-. = 𝜆(,)# + 2𝜇(#ℎ) 𝑥#

➜ Loss-dependent value à Stagnant loss component will increase proportionally
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Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., & Johnson, S. G. (2021). Physics-informed neural networks with hard constraints for inverse design. SIAM 
Journal on Scientific Computing, 43(6), B1105-B1132.



Example of AL method in action
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IEEE benchmark cases
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➜ Grid	systems	with	loads,	generator,	empty	
buses,	transmission	lines,	transformers,
shunt	elements

➜ Benchmark	cases	used	in	literature
➜ Cases	used:

○ Case9

○ Case9Q

○ Case24_ieee_rts

○ Case30

○ Case118



Training Regiment
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➜ Initial testing: 𝑀 = 1 input

○ Easy validation with 
solver result

○ Necessary for 𝑀 > 1

Evolution of equality loss (nodal balance) at each epoch



Evaluation results – 𝑀 = 1

14



Evaluation results – 𝑀 > 1
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➜ Training with M=20 à varying demand profile
➜ Test for Case9Q (tuned)



Trade-off between cost and PF equations
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Conclusions and Future works

➜ PI-GNNs performances comparable to that of modern solvers

➜ Great flexibility (no need to adapt hyperparameters)

Future directions:

➜ Full sensitivity analysis (optimal architecture & hyperparameters)

➜ Extension to connected sequences of demands (time-series)
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A little advertisement…



Thanks for your attention!!

gdinvern@sissa.it
https://aledinve.github.io
giuseppe-alessio-dinverno
AleDinve
@AleDinve


