Brain Memory Working

Franco Cardin¹, Alberto Lovison², Amos Maritan³, Aram Megighian⁴

PINN-PAD: PHYSICS INFORMED NEURAL NETWORKS IN PADOVA - DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE

⁴ Dipartimento di Scienze Biomediche and P<mark>adova Neuroscience Center - Università di</mark> Padova Università di Padova Dipartimento di Matematica

ia Trieste 63 - 35121 PD

Dipartimento di Matematica "Tullio Levi-Civita" - Università di Padova

 $^{^2}$ Dipartimento di Matematica e Fisica "Ennio De Giorgi" - Università del Salento

³Dipartimento di Fisica e Astron<mark>omia "Galileo Galilei" - Università di Padova</mark>

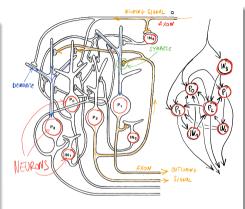
HOPFIELD MODEL OF NEURAL NETWORK

Original discrete Hopfield model with N neurons. At the n-th time step activation potential at neuron \dot{i} :

$$V_i^{(n)}, \qquad i = 1, \dots, N.$$

 $T_{ij} =$ conductance between neurons i and j. Potentials updating rule:

$$V_i^{(n+1)} = g\left(\sum_{j=1}^N T_{ij}V_j^{(n)}\right), \quad g(u) := \begin{cases} +1 & u \geqslant a, \\ -1 & u < a. \end{cases}$$



A neuronal circuit.

HOPFIELD MODEL OF NEURAL NETWORK

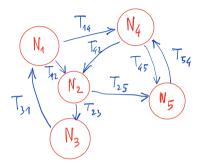
Neuronal network.

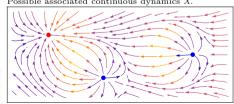
The associated continuous dynamics

$$\dot{u}_i = \sum_{j=1}^{N} T_{ij} g(u_j) - u_i$$

where g(x) is a sigmoidal activation function, is described by the vector field

$$X_i(u) = \sum_{j=1}^{N} T_{ij}g(u_j) - u_i.$$





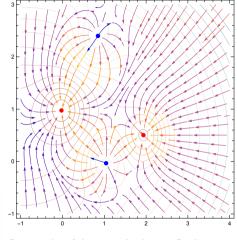
Blue dots: sources. Red dots: sinks.

SYMMETRIC HOPFIELD MODEL OF NEURAL NETWORK

- Symmetry: $T_{ij} = T_{ji}$
- ➤ Symmetry + Constancy : Energy landscape

$$E(V) := -\frac{1}{2} T_{ij} V_i V_j + \sum_{i=1}^{N} \int_0^{V_i} g^{-1}(x) dx.$$

- Gradient dynamics $X = -\nabla E$
- ▶ Dynamics drives the potential pattern (V_1, \ldots, V_N) towards the local energy minimum.



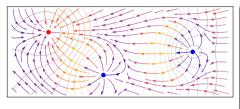
Contour plot of the energy landscape. Gradient-type dynamics. Minima = red dots. Maxima = blue dots.

NETWORK UPDATES

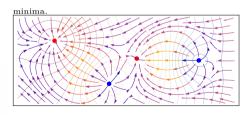
► Hebbian updates are discontinuos and can only add new patterns until saturation.

$$T_{ij}^{new} = T_{ij}^{old} + \frac{1}{N} \widehat{V}_i \widehat{V}_j$$

Excessively rigid updating scheme: the network is forced to learn a pattern.



Hebbian updates to T_{ij} add new patterns/landscape



KROTOV: NON CONSTANT BUT SYMMETRIC

▶ the interaction matrix T_{ij} varies with electric potential V_i according to this "unusual" rule:

$$T_{ij} o T_{ij}(V) := \frac{\partial^2 \Phi}{\partial V_i \partial V_j}(V),$$
 (still symmetric) (\spadesuit)

Krotov extension:

- ▶ $T_{ij}(V)$ is the Hessian of the Lagrangian $\Phi(V)$.
- ▶ via Legendre transform we obtain the Hamiltonian energy:

$$E(V) := -\left(\nabla \Phi(V) \cdot V - \Phi(V) - \sum_{i=1}^{N} \int_{0}^{V_{i}} g^{-1}(x) dx\right).$$

▶ new gradient vector field:

$$\widehat{X}_{i}(V) := -\nabla_{i} E(V) = \nabla_{ij}^{2} \Phi(V) \cdot V_{j} - g^{-1}(V_{i}).$$

FIRST SYMMETRIC NON CONSTANT PROPOSAL

We have descripted condition (\spadesuit) :

THEOREM

In a simply connected domain, the closure condition:

$$(T_{kj,i} - T_{ki,j}) V_k = 0, \qquad (\star)$$

is equivalent to the gradient structure for \widehat{X} and to the existence of a Lyapunov-like energy function.

Remark

Under the stronger condition:

$$T_{kj,i} - T_{ki,j} = 0, \qquad (\diamondsuit$$

FIRST SYMMETRIC NON CONSTANT PROPOSAL

In the more general condition (\star) , we define now the corresponding Energy function. Let :

$$W(x) := \int_0^1 T_{ij}(\lambda x) \lambda x_i x_j d\lambda,$$

we set

$$E(V) := -W(V) + \sum_{i=1}^{N} \int_{0}^{V_i} g^{-1}(\lambda) d\lambda,$$

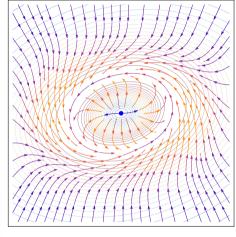
and obtain

$$\widehat{X_i} = -\nabla E(V) = T_{ij}(V)V_j - g^{-1}(V_i).$$
gradient-like
dynamics

NEED FOR BREAKING THE SYMMETRY

- Physiology states that T_{ij} is asymmetric: connections are directed, i.e., specific structures are dedicated to outgoing (axons) and incoming (dendrites) connections.
- ► Features non comprised by symmetric interactions:
 - oscillations / memory association,
 - wandering (instability),
 - ▶ forgetting and recovering memories.

Oscillations and instability need for asymmetry in T_{ij}



Oscillations or limit cycles are only possible with asymmetry.

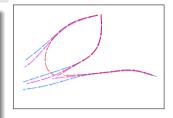
- Starting constant matrix A_{ij} non symmetric.
- **ξ**-controlled adjustments:

$$T_{ij}(\xi) := A_{ij} + \xi_{ij}, \qquad |\xi_{ij}| \leqslant K$$

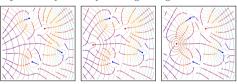
 \triangleright ξ -controlled Hopfield dynamics:

$$\dot{u}_i(t) = X_i(u(t), \xi(t)) =$$

$$= \sum_{j=1}^{N} (A_{ij} + \xi_{ij}(t)) g(u_j(t)) - u_i(t).$$



Trajectories dynamically evolving during motion.



Dynamical evolution of the energy landscape (symmetric).

Ideas already appeared for instance in

- G. Parisi, Asymmetric neural networks and the process of learning, J.Phys A, 1986
- D. Vardalaki et al, Filopodia are a structural substrate for silent synapses in adult neocortex. Nature 2022

Remark on sparsity:

- ▶ If N is large, A_{ij} is sparse.
- ξ_{ij} may update only $A_{ij} \neq 0$, or...
- ξ_{ij} may also act on $A_{ij} = 0$, lighting up
 - existing but silent synapses
 - build brand new synapses not existing before

Proposal: fix $0 < k \ll K$:

if $A_{ij} \neq 0 \implies |\xi_{ij}(t)| \leqslant K$, i.e., if a connection A_{ij} between neurons i and j already exists, then the corresponding update may be "strong": $\xi_{ij} \leqslant K$.

if $A_{ij} = 0 \implies |\xi_{ij}(t)| \le k \ll K$, i.e., if A_{ij} is silent, then only smaller updates are possible $\xi_{ij} < k \ll K$.

D. Vardalaki et al, Filopodia are a structural substrate for silent synapses in adult neocortex. Nature 2022

Resuming the updating scheme we write: $|\xi_{ij}(t)| \leq (k, K)$.

Surprisingly: there exist a perfectly fit powerful mathematical framework:

Infinite Horizon Optimal Control Problem.

▶ Differential Constraint:

$$\dot{u}_i(t) = X_i(u(t), \xi(t)) = \sum_{i=1}^{N} (A_{ij} + \xi_{ij}(t)) g(u_j(t)) - u_i(t). \tag{\dagger}$$

 $ightharpoonup e^{-\lambda t}$ -discounted variational principle:

$$\min_{\xi(\cdot)} J\Big(u^{(0)}, \xi(\cdot))\Big) = \min_{\xi(\cdot)} \int_0^{+\infty} \underbrace{\left(\left|X(u(t, u^{(0)}, \xi(\cdot)), \xi(t))\right|^2 + |\xi(t)|^2\right)}_{\text{Lagrangian: } \ell(u, \xi)} e^{-\lambda t} dt$$

Infinite Horizon Optimal Control Problem.

► The Lagrangian of the Control Problem:

$$\ell(u,\xi) = |X(u,\xi)|^2 + |\xi|^2,$$

- $|X|^2$ small \Rightarrow towards equilibra,
- $|\xi|^2$ small \Rightarrow cheap solutions in terms of matrix modification.
- ▶ The discount $e^{-\lambda t}$ ensures convergence.
- ▶ Control problem: for fixed $u^{(0)}$ find the minimizing controls $\xi(\cdot)$:

$$\inf_{|\xi(t)| \leqslant (K,k)} J\left(u^{(0)}, \xi(\cdot)\right),\,$$

DISCUSSION OF THE CONTROLLED MODEL

A controlled trajectory starting from the input pattern $u^{(0)}$ may fall in one of the following classes:

reach existing equilibrium without activating the controls $\mathcal{E}=0$:

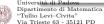
$$\lim_{t \to \infty} X(u(t, u^{(0)}, 0), 0) = X(u^*, 0) = 0,$$

i.e., the initial pattern $u^{(0)}$ has been recognized.

▶ The controls $\xi(t) \neq 0$ operate to minimize $J(u, \xi)$ and asymptotically drive to a new equilibrium:

$$\lim_{t\to\infty}X(u(t,u^{(0)},\xi(t)),\xi(t))=X(u^{\star\star},\xi_\infty^{\star\star})=0,$$

i.e., the initial pattern $u^{(0)}$ has been recorded in the network $T_{ij} \to T_{ij} + \xi_{\infty}^{\star\star}$ and a new equilibrium $u^{\star\star}$ has been created.



DISCUSSION OF THE CONTROLLED MODEL

- **•** • •
- Assume that \bar{u} is an equilibrium for the synaptic matrix T_{ij} . A sequence of alterations to T_{ij} are operated:

$$T_{ij} \to T_{ij} + \xi_{\infty}^{\alpha} + \dots + \xi_{\infty}^{\omega}, \qquad |\xi_{\infty}^{\alpha} + \dots + \xi_{\infty}^{\omega}| > K.$$

In the new configuration the pattern \bar{u} cannot be recognized, i.e., the pattern \bar{u} has been forgot.

• (continued) Successive alteration ξ_{∞}^{η} may bring back the synaptic network closer to the starting configuration:

$$|\xi_{\infty}^{\alpha} + \dots + \xi_{\infty}^{\omega} + \xi_{\infty}^{\eta}| \leqslant K,$$

allowing to recover the old equilibrium \bar{u} , i.e., a memory has been restored.

DISCUSSION OF THE CONTROLLED MODEL

- **•** • •
- ▶ Given the asymmetry of T_{ij} , limit cycles are possibly approached $(\xi = 0)$ or created $(\xi_{\infty} \neq 0)$ during the controlled motion:

$$\lim_{t\to\infty} \operatorname{dist}\left(u(t,u^{(0)},\xi(t)),\mathcal{U}\right) = 0, \qquad \mathcal{U}\subseteq\mathbb{R}^N \quad \text{(limit cycle)},$$

Instability with oscillations: this situation can be interpreted as memory association.

- ▶ H Yan et al., Nonequilibrium Landscape Theory of Neural Networks, PNAS 2013
- Controls are activated during the motion $(\xi(t) \neq 0)$ but they are not able to reach or create any equilibrium:

$$\lim_{t \to \infty} u(t, u^{(0)}, \xi(t)) \qquad \text{does not exist.}$$

Instability with wandering: pattern not found nor created.

FURTHER DISCUSSION / CONCLUSIONS

- ► Final Value Theorem
- ► Hamilton-Jacobi-Bellman Equation
- Dynamic Programming Principle
- ▶ Pareto optimization: conservative/innovative attitudes:

$$J_{\boldsymbol{\mu}}\left(u^{(0)},\xi(\cdot))\right) := \int_0^{+\infty} \underbrace{\left(\left(1-\boldsymbol{\mu}\right) \left|X(u(t,u^{(0)},\xi(\cdot)),\xi(t))\right|^2 + \boldsymbol{\mu}\left|\xi(t)\right|^2\right)}_{\text{Lagrangian: }\ell_{\boldsymbol{\mu}}(u,\xi)} e^{-\lambda t} dt$$

- if $0 < \mu \ll 1$ large values of ξ are allowed, letting the network explore innovative configurations,
- if $0 \ll \mu < 1$ large values of ξ are penalized and the network is more prone towards existing minima: conservative attitude.

Thanks for your attention!

Brain memory working. Optimal control behavior for improved Hopfield-like models https://arxiv.org/abs/2305.14360

alberto.lovison@unipd.it

