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HOPFIELD MODEL OF NEURAL NeETWORK

Original discrete Hopfield model with N neurons.

At the n-th time step activation potential at neuron
1

v =1, N

Ty = conductance between neurons 7 and j.
Potentials updating rule:

N
N

-1 u<a.

A neuronal circuit.




HOPFIELD MODEL OF NEURAL NeETWORK

Neuronal network.
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The associated continuous dynamics 7/
T

D;\ Ts,
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N
U = Z Tijg(w) — ui -
=1 T T

where g(z) is a sigmoidal activation function,
is described by the vector field

Blue dots: sources. Red dots: sinks.




SYMMETRIC HOPFIELD MODEL OF NEURAL NeETWORK

» Symmetry: Ty = T
» Symmetry + Constancy : FEnergy
landscape

1 YoV
= VeV —1
E(V):= —ETUVZVJ—i—;/O g " (x)dz.

» Gradient dynamics
X=-VE

» Dynamics drives the potential pattern
(Vi,..., Vy) towards the local energy
minimum.
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Contour plot of the energy landscape. Gradient-type

dynamics. Minima = red dots. Maxima = blue dots.




NETWORK UPDATES

» Hebbian updates are discontinuos and
can only add new patterns until
saturation.
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ew __ ld
TE" = T3 + ViV

» Excessively rigid updating scheme: the
network is forced to learn a pattern.
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Hebbian updates to Ty add new patterns/landscap

minima.
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KIROTOV: NON CONSTANT BUT SYMMETRIC
» the interaction matrix Ty varies with electric potential V;
according to this “unusual” rule:

Ty — | Ty(V) = (still symmetric) ()

» T4(V) is the Hessian of the Lagrangian ®(V).

Krotov
I b i . . . :
N —" via Legendre transform we obtain the Hamiltonian energy

N V;
E(V) :=— <Vq>(w V- @(I/)—Z/ g_l(ac)dac).
=170

» new gradient vector field:

Xi(V) i= =ViE(V) = VEB(V) - Vi — g (V).




FIRST SYMMETRIC NON CONSTANT PROPOSAL
We have decripted condition (#):

THEOREM

In a simply connected domain, the closure condition:

(Thji — Thij) Vi = 0, ()

is equivalent to the gradient structure for X and to the existence of a
Lyapunov-like energy function.

Remark

Under the stronger condition:

Tyji — Trij =0, (<)

awe-gain the Krotov hypothesis (#): T'= V2®, but not to (x).




FIRST SYMMETRIC NON CONSTANT PROPOSAL

In the more general condition (%), we define now the corresponding
Energy function. Let :

1
W(z) ::/ Tii(Ax) AwgzjdA,
0

we set
N Vi
E(V) = —W(V) + Z/O g N)dA,
=1
and obtain e
X;=-VE(V)=Ty(V)V;— g (V).
————

gradient-like
dynamics




NEED FOR BREAKING THE SYMMETRY

» Physiology states that 7% is
asymmetric: connections are directed,
i.e., specific structures are dedicated to
outgoing (axons) and incoming
(dendrites) connections.

» Features non comprised by symmetric
interactions:

> oscillations / memory association,

> wandering (instability),

» forgetting and recovering memories.
Oscillations and instability need for
asymmetry in Ty
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Oscillations or limit cycles are only possible with

asymmetry.
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A NEW PROPOSAL: ASYMMETRIC OPTIMAL CONTROL

» Starting constant matrix A; non ]
symmetric. / /

» ¢-controlled adjustments:

Ty(§) == Ay + &), 1€yl < K —

> g_controlled Hopﬁeld dynamiCS: Trajectories dyrfafnically evolving f:iuring motion. ‘
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Dynamical evolution of the energy landscape (symmetric).

Ideas already appeared for instance in
B
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A NEW PROPOSAL: ASYMMETRIC OPTIMAL CONTROL

Remark on sparsity:
> If Nis large, Aj; is sparse.
> &; may update only Ay # 0,
or...
> ¢ may also act on Ay = 0,
lighting up
P existing but silent synapses

» build brand new synapses
not existing before

Proposal: fix 0 < k< K:
. . <
> if Azj 7& 0 = |§zj(t)| < K, J

i.e., if a connection A; between neurons %
and j already exists, then the
corresponding update may be “strong”:

> if 43=0 = [§GOI<E<K, |
i.e., if Ay is silent, then only smaller
updates are possible §; < k < K.

Resuming the updating scheme we write: |£;(?)| < (k, K).
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A NEW PROPOSAL: ASYMMETRIC OPTIMAL CONTROL

Surprisingly: there exist a perfectly fit powerful mathematical framework: )

Infinite Horizon Optimal Control Problem. J

» Differential Constraint:

N

ii(t) = Xi (u(t), £(8) =Y (A + &i5(1) gui(t) — ui(t). (1)

i=1

> e *-discounted variational principle:

win 7 (4. €09)) =i [ - (|xeutea®.cen. e +isco) e var

N~

Lagrangian: £(u,£)

where u(u®, £(-)) solves the differential constraint (1).




A NEW PROPOSAL: ASYMMETRIC OPTIMAL CONTROL
Infinite Horizon Optimal Control Problem. J

» The Lagrangian of the Control Problem:

O(u,€) = | X(u, )1 + €7,

> |X]? small = towards equilibra,
> ]5\2 small = cheap solutions in terms of matrix modification.
» The discount e ** ensures convergence.

» Control problem: for fixed u(?) find the minimizing controls &(-):

inf  J(4?,£0)),
|¢<t>|<<K,k)< 5())> }
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DISCUSSION OF THE CONTROLLED MODEL

0)

A controlled trajectory starting from the input pattern «(9) may fall in one

of the following classes:
» reach existing equilibrium without activating the controls £ = 0:

lim X(u(t, u?,0),0) = X(u*,0) = 0,

t—00

i.e., the initial pattern u(*) has been recognized.

» The controls £(t) # 0 operate to minimize J(u, £) and asymptotically
drive to a new equilibrium:

lim X(u(t, u', (1)), €(1) = X(u™, %) =0,

t—o00

i.e., the initial pattern u(*) has been recorded in the network
Ty — Ty + & and a new equilibrium «** has been created.
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DISCUSSION OF THE CONTROLLED MODEL
> LN

» Assume that u is an equilibrium for the synaptic matrix 7. A
sequence of alterations to T are operated:

Ty — T+ &+ + &% €5+ + &> K

In the new configuration the pattern @ cannot be recognized, i.e., the
pattern u has been forgot.

» (continued) Successive alteration {4, may bring back the synaptic
network closer to the starting configuration:

€+ HEG HELI S K,

allowing to recover the old equilibrium %, i.e., a memory has been
restored.
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DISCUSSION OF THE CONTROLLED MODEL
> LN

» Given the asymmetry of Ty, limit cycles are possibly approached
(£ =0) or created (s # 0) during the controlled motion:

lim dist (u(t, u(o),f(t)),l/l> =0, UCRY  (limit cycle),

t—o00

Instability with oscillations: this situation can be interpreted as
memory association.

» H Yan et al., Nonequilibrium Landscape Theory of Neural Networks, PNAS 2013 J

» Controls are activated during the motion (£(¢) # 0) but they are not
able to reach or create any equilibrium:

tl_i}m u(t, ul®, £(t)) does not exist.

Instability with wandering: pattern not found nor created.




FURTHER DISCUSSION / CONCLUSIONS
> Final Value Theorem
> Hamilton-Jacobi-Bellman Equation
> Dynamic Programming Principle

> Parekto op&imiz.a&icn: conservative/innovative attibudes:

5, (u®.) = [ - (00 xtute . ). )| + O ) e

Lagrangian: £, (u,€)

> f 0<pu<1 large values of ¢ are allowed, letting the network
explore tnnovative configurations,

> if 0<u<1 large values of ¢ are penalized and the network is
more prone towards existing minima: conservative attitude.
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