Brain Memory Working

Franco Cardin1, Alberto Lovison2, Amos Maritan3, Aram Megighian4

PINN-PAD: Physics Informed Neural Networks in Padova - Dipartimento di Ingegneria Civile, Edile e Ambientale

1Dipartimento di Matematica “Tullio Levi-Civita” - Università di Padova
2Dipartimento di Matematica e Fisica “Ennio De Giorgi” - Università del Salento
3Dipartimento di Fisica e Astronomia “Galileo Galilei” - Università di Padova
4Dipartimento di Scienze Biomediche and Padova Neuroscience Center - Università di Padova
Original discrete Hopfield model with N neurons. At the n-th time step activation potential at neuron i:

$$V^{(n)}_i, \quad i = 1, \ldots, N.$$

$T_{ij} =$ conductance between neurons i and j. Potentials updating rule:

$$V^{(n+1)}_i = g \left(\sum_{j=1}^{N} T_{ij} V^{(n)}_j \right), \quad g(u) := \begin{cases} +1 & u \geq a, \\ -1 & u < a. \end{cases}$$

A neuronal circuit.
The associated continuous dynamics

\[
\dot{u}_i = \sum_{j=1}^{N} T_{ij} g(u_j) - u_i
\]

where \(g(x) \) is a sigmoidal activation function, is described by the vector field

\[
X_i(u) = \sum_{j=1}^{N} T_{ij} g(u_j) - u_i.
\]
Symmetry: $T_{ij} = T_{ji}$

Symmetry + Constancy: Energy landscape

$$E(V) := -\frac{1}{2} T_{ij} V_i V_j + \sum_{i=1}^{N} \int_0^V g^{-1}(x) \, dx.$$

Gradient dynamics

$$X = -\nabla E$$

Dynamics drives the potential pattern (V_1, \ldots, V_N) towards the local energy minimum.

Contour plot of the energy landscape. Gradient-type dynamics. Minima = red dots. Maxima = blue dots.
Hebbian updates are discontinuous and can only add new patterns until saturation.

\[T_{ij}^{new} = T_{ij}^{old} + \frac{1}{N} \hat{V}_i \hat{V}_j \]

Excessively rigid updating scheme: the network is forced to learn a pattern.
the interaction matrix T_{ij} varies with electric potential V_i according to this “unusual” rule:

$$T_{ij} \rightarrow T_{ij}(V) := \frac{\partial^2 \Phi}{\partial V_i \partial V_j}(V), \quad \text{(still symmetric)} \quad (\spadesuit)$$

$T_{ij}(V)$ is the Hessian of the Lagrangian $\Phi(V)$.

via Legendre transform we obtain the Hamiltonian energy:

$$E(V) := -\left(\nabla \Phi(V) \cdot V - \Phi(V) - \sum_{i=1}^{N} \int_{0}^{V_i} g^{-1}(x) dx \right).$$

new gradient vector field:

$$\widehat{X}_i(V) := -\nabla_i E(V) = \nabla_{ij}^2 \Phi(V) \cdot V_j - g^{-1}(V_i).$$
We have decrypted condition (♠):

Theorem

In a simply connected domain, the closure condition:

\[(T_{kj,i} - T_{ki,j})V_k = 0, \quad (\star)\]

is equivalent to the gradient structure for \(\hat{X}\) and to the existence of a Lyapunov-like energy function.

Remark

*Under the stronger condition:

\[T_{kj,i} - T_{ki,j} = 0, \quad (\diamond)\]

we gain the Krotov hypothesis (♠): \(T = \nabla^2 \Phi\), but not to (\(\star\)).
In the more general condition (⋆), we define now the corresponding Energy function. Let:

\[W(x) := \int_0^1 T_{ij}(\lambda x)\lambda x_i x_j d\lambda, \]

we set

\[E(V) := -W(V) + \sum_{i=1}^N \int_0^V g^{-1}(\lambda) d\lambda, \]

and obtain

\[\hat{X}_i = -\nabla E(V) = T_{ij}(V)V_j - g^{-1}(V_i). \]

gradient-like dynamics
Physiology states that T_{ij} is asymmetric: connections are directed, i.e., specific structures are dedicated to outgoing (axons) and incoming (dendrites) connections.

Features non comprised by symmetric interactions:

- oscillations / memory association,
- wandering (instability),
- forgetting and recovering memories.

Oscillations and instability need for asymmetry in T_{ij}

Oscillations or limit cycles are only possible with asymmetry.
A NEW PROPOSAL: ASYMMETRIC OPTIMAL CONTROL

- Starting constant matrix A_{ij} non-symmetric.
- ξ-controlled adjustments:

 \[
 T_{ij}(\xi) := A_{ij} + \xi_{ij}, \quad |\xi_{ij}| \leq K
 \]
- ξ-controlled Hopfield dynamics:

 \[
 \dot{u}_i(t) = X_i(u(t), \xi(t)) = \sum_{j=1}^{N} \left(A_{ij} + \xi_{ij}(t) \right) g(u_j(t)) - u_i(t).
 \]

Trajectories dynamically evolving during motion. Dynamical evolution of the energy landscape (symmetric).

Ideas already appeared for instance in

- D. Vardalaki et al, Filopodia are a structural substrate for silent synapses in adult neocortex. Nature 2022
A NEW PROPOSAL: ASYMMETRIC OPTIMAL CONTROL

Remark on sparsity:

- If \(N \) is large, \(A_{ij} \) is sparse.
- \(\xi_{ij} \) may update only \(A_{ij} \neq 0 \), or...
- \(\xi_{ij} \) may also act on \(A_{ij} = 0 \), lighting up
 - existing but silent synapses
 - build brand new synapses not existing before

Proposal: fix \(0 < k \ll K \):

- if \(A_{ij} \neq 0 \) \(\implies |\xi_{ij}(t)| \leq K \),
 i.e., if a connection \(A_{ij} \) between neurons \(i \) and \(j \) already exists, then the corresponding update may be “strong”: \(\xi_{ij} \leq K \).

- if \(A_{ij} = 0 \) \(\implies |\xi_{ij}(t)| \leq k \ll K \),
 i.e., if \(A_{ij} \) is silent, then only smaller updates are possible \(\xi_{ij} < k \ll K \).

Resuming the updating scheme we write: \(|\xi_{ij}(t)| \leq (k, K) \).

- D. Vardalaki et al, Filopodia are a structural substrate for silent synapses in adult neocortex. Nature 2022
A NEW PROPOSAL: ASYMMETRIC OPTIMAL CONTROL

Surprisingly: there exist a perfectly fit powerful mathematical framework:

Infinite Horizon Optimal Control Problem.

- Differential Constraint:

\[\dot{u}_i(t) = X_i(u(t), \xi(t)) = \sum_{j=1}^{N} (A_{ij} + \xi_{ij}(t)) g(u_j(t)) - u_i(t). \]

- \(e^{-\lambda t} \)-discounted variational principle:

\[
\min_{\xi(\cdot)} J\left(u^{(0)}, \xi(\cdot)\right) = \min_{\xi(\cdot)} \int_0^{+\infty} \left\{ \left| X(u(t, u^{(0)}, \xi(\cdot)), \xi(t)) \right|^2 + |\xi(t)|^2 \right\} e^{-\lambda t} dt
\]

Lagrangian: \(\ell(u, \xi) \)

where \(u(u^{(0)}, \xi(\cdot)) \) solves the differential constraint (\(\dagger \)).
A NEW PROPOSAL: ASYMMETRIC OPTIMAL CONTROL

Infinite Horizon Optimal Control Problem.

- The Lagrangian of the Control Problem:
 \[\ell(u, \xi) = |X(u, \xi)|^2 + |\xi|^2, \]

- \(|X|^2\) small ⇒ towards equilibra,
- \(|\xi|^2\) small ⇒ cheap solutions in terms of matrix modification.
- The discount \(e^{-\lambda t}\) ensures convergence.
- Control problem: for fixed \(u^{(0)}\) find the minimizing controls \(\xi(\cdot)\):
 \[\inf_{|\xi(t)| \leq (K,k)} J\left(u^{(0)}, \xi(\cdot)\right), \]
A controlled trajectory starting from the input pattern $u^{(0)}$ may fall in one of the following classes:

- reach existing equilibrium without activating the controls $\xi = 0$:

\[
\lim_{t \to \infty} X(u(t, u^{(0)}, 0), 0) = X(u^*, 0) = 0,
\]

i.e., the initial pattern $u^{(0)}$ has been recognized.

- The controls $\xi(t) \neq 0$ operate to minimize $J(u, \xi)$ and asymptotically drive to a new equilibrium:

\[
\lim_{t \to \infty} X(u(t, u^{(0)}, \xi(t)), \xi(t)) = X(u^{**}, \xi^{**}) = 0,
\]

i.e., the initial pattern $u^{(0)}$ has been recorded in the network $T_{ij} \to T_{ij} + \xi^{**}$ and a new equilibrium u^{**} has been created.
Assume that \(\bar{u} \) is an equilibrium for the synaptic matrix \(T_{ij} \). A sequence of alterations to \(T_{ij} \) are operated:

\[
T_{ij} \rightarrow T_{ij} + \xi^\alpha + \cdots + \xi^\omega, \quad |\xi^\alpha + \cdots + \xi^\omega| > K.
\]

In the new configuration the pattern \(\bar{u} \) cannot be recognized, i.e., the pattern \(\bar{u} \) has been forgot.

(continued) Successive alteration \(\xi^n_\infty \) may bring back the synaptic network closer to the starting configuration:

\[
|\xi^\alpha + \cdots + \xi^\omega + \xi^n_\infty| \leq K,
\]

allowing to recover the old equilibrium \(\bar{u} \), i.e., a memory has been restored.
Discussion of the controlled model

Given the asymmetry of T_{ij}, limit cycles are possibly approached ($\xi = 0$) or created ($\xi_\infty \neq 0$) during the controlled motion:

$$\lim_{t \to \infty} \text{dist} \left(u(t, u(0), \xi(t)), \mathcal{U} \right) = 0, \quad \mathcal{U} \subseteq \mathbb{R}^N \quad \text{(limit cycle)},$$

Instability with oscillations: this situation can be interpreted as memory association.

Controls are activated during the motion ($\xi(t) \neq 0$) but they are not able to reach or create any equilibrium:

$$\lim_{t \to \infty} u(t, u(0), \xi(t)) \quad \text{does not exist.}$$

Instability with wandering: pattern not found nor created.
FURTHER DISCUSSION / CONCLUSIONS

- **Final Value Theorem**
- **Hamilton-Jacobi-Bellman Equation**
- **Dynamic Programming Principle**
- **Pareto optimization: conservative/innovative attitudes:**

\[
J_\mu \left(u^{(0)}, \xi(\cdot) \right) := \int_0^{+\infty} \left((1 - \mu) \left| X(u(t, u^{(0)}, \xi(\cdot)), \xi(t)) \right|^2 + \mu \left| \xi(t) \right|^2 \right) e^{-\lambda t} dt
\]

Lagrangian: \(\ell_\mu(u, \xi) \)

- if \(0 < \mu \ll 1 \) large values of \(\xi \) are allowed, letting the network explore innovative configurations,
- if \(0 \ll \mu < 1 \) large values of \(\xi \) are penalized and the network is more prone towards existing minima: conservative attitude.
Thanks for your attention!

Brain memory working. Optimal control behavior for improved Hopfield-like models
https://arxiv.org/abs/2305.14360

alberto.lovison@unipd.it