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Coronal Mass Ejections (CMEs) consist of large eruptions of plasma that are typically triggered by solar flares and 
they can propagate through the solar wind from the solar corona into the heliosphere.

The observations of CMEs are typically performed by means of remote-
sensing instruments that can measure their most significant kinematic 
parameters, such as the initial propagation speed, the CME mass, and the 
initial cross section. Examples of telescopes appropriate for measuring 
remote sensing parameters are coronagraphs on board space clusters 
such as the Large Angle and Spectrometric Coronagraph (LASCO) on 
board the Solar and Heliophysics Observatory (SOHO).

We are interested in predicting the travel time of interplanetary CMEs



Drag-based model

Drag parameter

ሷ𝑟 = CME acceleration
ሶ𝑟 = CME speed

w = solar wind speed

ρ = solar wind density
A = CME impact area
m = CME mass
C = drag coefficient (unknown)

Drag Equation is completed to a Cauchy problem by including the two initial conditions 
r 𝑡0 = 𝑟0

ሶ𝑟 𝑡0 = 𝑣0

where 𝑟0 is the height of the eruption ballistic propagation, and 𝑣0 is the initial CME speed.



Assuming that the solar wind speed and the drag parameter are constant and homogeneous, the drag equation 
leads to

This equation can be used to estimate the travel time as the solution of r(t) = 1 AU, if accurate estimates of 
the parameters are at disposal.



𝐿𝑡 𝑡, 𝑓(𝑤, 𝑥) = λ (𝑡 − 𝑓(𝑤, 𝑥))2 + 1 − λ (1 − 𝑟 𝑓(𝑤, 𝑥), 𝐶 )2

Data-driven term Physics-driven term

λ=1 → only data-driven term → Fully data-driven
λ=0 → only physics-driven term → Fully physics-driven
λ ∈ (0,1) (e.g. λ =0.5) → both terms → Mix

However... we need to estimate C !

To use r(t) in the construction of a loss function, we adopt the approximation

Then, we can consider a loss function of the form



𝐿𝐶 𝑡, 𝑁1(𝑥 ) = ( 1 − 𝑟 𝑡, 𝑁1 𝑥  )2 𝐿𝑡 𝑡, 𝑁2( ҧ𝑥) = λ (𝑡 − 𝑁2( ҧ𝑥))2 + 1 − λ (1 − 𝑟 𝑁2 ҧ𝑥 , 𝑁1 𝑥 )2



We considered 123 CME events occurred in the time range between 1997 and 2018 (that comply with the DB 
model)

In order to perform a statistical assessment of the physics-driven machine learning approach to travel time 
prediction, we realized 100 random realizations of the training, validation, and test (70-15-15)



Comparison between completely data-driven approach versus the new mix physics-driven approach

Completely data-driven
N1 is switched off 
C is not an input of the second N2
λ = 1

Mix physics-driven approach 
N1 is switched on 
C is an input of the second N2
λ = 0.5

𝐿𝑇 𝑡, 𝑁2(𝑥) = (𝑡 − 𝑁2(𝑥))2 𝐿𝑇 𝑡, 𝑁2( ҧ𝑥) =
1

2
 (𝑡 − 𝑁2( ҧ𝑥))2 +

1

2
(1 − 𝑟 𝑁1 𝑥 , 𝑁2( ҧ𝑥) )2



Legend of 
configurations



The drag-based model is simple:
• Investigating possible modifications of the drag-based model to be included in the loss functions
• Study of analytical solutions
• The new model can include events that cannot be physically explained by drag-based model

The dataset is not that large:
• Use simulated data (… and transfer learning?)

Tuning the C parameter seems to be important:
• In our experiments, for some events the estimated value of C leads to r(t)<0.95 or r(t)>1.05 when t is the 

true travel time (we should have r(t)≈1 !)
• Using other strategies proposed in literature for tuning C does not solve the problem.
• A better understanding of the CMEs in the dataset might lead to a better training process (with an improved 

splitting strategy)
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