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Introduction and Leading 
Motivations

#HPC #PDEs #DL
#offline-online #software

 



Leading Motivation: Computational Sciences challenges

➔ Reduced Order Modelling is a quickly emerging field in applied 
mathematics and computational science and engineering for 
speeding up Numerical Simulations 

➔ Growing demand of
◆ efficient computational tools
◆ many query and real time computations
◆ parametric formulations
◆ uncertainty quantification

➔ The need of a computational collaboration rather than a 
competition between High Performance Computing (HPC) and 
Reduced Order Methods (ROM), as well as Full/High Order and 
Reduced Order Methods.



Physical Parametric Differential Problems Overview 

Parametric Differential Problem  are ubiquitous in many field of Natural Science from 
naval and nautical engineering,  to aeronautical engineering and industrial engineering.

automotive biomedics aeronautics

References:
1. Rozza, Gianluigi, Giovanni Stabile, and Francesco Ballarin (2022)  eds. Advanced Reduced Order Methods and Applications in 

Computational Fluid Dynamics. Society for Industrial and Applied Mathematics.



The Deep Learning New Era  

Research articles on CSE using PINNs

Physics Informed Neural Networks (PINNs), Deep Learning ROM (DL-ROMs) and Neural 
Solvers are revolutionizing the field of Computational Science bringing high generalization 
capability 

Research articles per year on learning PDEs



Towards real-time computation (hardware)



Computational Webserver/Computational Apps  

Model order reduction for computational web server: to real world applications argos.sissa.it

● HPC
● data science
● Digital twin
● SMACT Industry 4.0
● 3D Printing



Digital Twin (DT): integration of emerging fields  



SISSA mathLab: our current efforts and perspectives

A team developing Advanced Reduced Order Methods for parametric PDEs! 



Goals of our research group:
➔ Face and overcome several limitations of the state of the art for 

parametric ROM by means of Deep Learning
➔ Improve capabilities of reduced order methodologies for more 

demanding applications in industrial, medical and applied sciences 
settings

➔ Carry out important methodological developments in Numerical 
Analysis, with special emphasis on mathematical modelling and a 
more extensive exploitation of Computational Science and Engineering

➔ Focus on Computational Fluid Dynamics as a central topic to enhance 
broader applications in multiphysics and coupled settings (e.g. 
aeronautical, mechanical, naval,  cardiovascular surgery, …)

SISSA mathLab: our current efforts and perspectives



➔ Development of new open-source tools based on reduced order methods: 
○ ITHACA, In real Time Highly Advanced Computational Applications, as an add-on to 

integrate already well established CSE/CFD open-source software
○ RBniCS as educational initiative (FEM) for newcomer ROM users (training).
○ Argos Advanced Reduced order modellinG Online computational web server for parametric 

Systems
○ PINA a deep learning library to solve differential equations
○ EzyRB data-driven model order reduction for parametrized problems
○ PyDMD a Python package designed for Dynamic Mode Decomposition ( in collaboration 

with University of Texas, CERN, and University of Washington)

SISSA mathLab: our current efforts and perspectives



A short history of 
Scientific Machine Learning

#roms #history #pinns
#offline-online #neuraloperators

 



Scientific Machine Learning for PDEs

< 2017

Linear Algebra based 
Reduced Order Models

Artificial Neural Networks as 
Reduced Order Models  

2017

2019

Physics Informed Machine 
Learning

2021

Neural Operator Learning

….

Symmetries, High Dimensional 
Systems, Stochastic 
Equations, …

pod modes

https://towardsdatascience.com/discovering-differential-equations-with-physics-informed-neural-networks-and-symbolic-regression-c28d279c0b4d
https://towardsdatascience.com/solving-inverse-problems-with-physics-informed-deeponet-a-practical-guide-with-code-implementation-27795eb4f502
https://towardsdatascience.com/operator-learning-via-physics-informed-deeponet-lets-implement-it-from-scratch-6659f3179887
https://towardsdatascience.com/operator-learning-via-physics-informed-deeponet-lets-implement-it-from-scratch-6659f3179887
https://icerm.brown.edu/programs/sp-s20/w1/
https://www.vectorstock.com/royalty-free-vector/person-silhouette-with-question-mark-vector-13296382


How to solve PDEs by Scientific Machine Learning

data generation build ML model optimization

      

The ML pipeline can be divided into four stages

1. Select a problem to solve e.g. fluid dynamics, stochastic pdes, …
2. Generate the data, e.g. high fidelity simulations, scattered data from the domain, …
3. Build a ML model, e.g. NNs, POD + Interpolation, Neural Operators, …
4. Optimize the model, e.g. by Supervised, Physics-Informed losses and gradient descent

problem to solve



The Data-Driven 
Approach to 
Reduced Models

➔ Reducing Parameter Space
➔ Applicable for Sensor and 

Incomplete Data
➔ Fast Online Phase



Reduced Order Model - Accelerating Numerics

References:
1. Hesthaven, J. S., Rozza, G., & Stamm, B. (2016). Certified reduced basis methods for parametrized partial differential equations 

(Vol. 590, pp. 1-131). Berlin: Springer.
2. Rozza, G., Stabile, G., & Ballarin, F. (Eds.). (2022). Advanced Reduced Order Methods and Applications in Computational Fluid 

Dynamics. Society for Industrial and Applied Mathematics.



Data-Driven approach to ROM
ROM approximate the high dimensional solution manifold by dimensionality reduction and perform 
interpolation to predict for unseen parameters



Manifold Reduction - extracting latent features



Interpolation - approximate the low dimensional 
manifold



Physics Informed 
Neural Network

➔ No need of Data, only Equations
➔ Scatter Domain Data -> Avoiding 

Meshing
➔ General (inverse forward problems) 

and Fast



The Physics Informed Neural Network (PINN) 

Physics Informed Neural Network is an optimization technique to compute solution of 
differential equation using Neural Networks

+

References:
1. Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving 

forward and inverse problems involving nonlinear partial differential equations." Journal of Computational physics 378 (2019): 686-707.
2. Cuomo, Salvatore, et al. "Scientific machine learning through physics–informed neural networks: Where we are and what’s next." Journal 

of Scientific Computing 92.3 (2022): 88.

problem to 
solve

model



The Physics Informed Neural Network (PINN)

A parametrized ML model                    is used to approximate the true solution 
on some samples of scattered data inside the domain

extract coordinates 
from the domain

pass it through a DL 
model

approximate 
solution



The Physics Informed Neural Network (PINN)

The underlying differential equation in PINNs is used to derive the loss function, where the 
differential operators are computed by automatic differentiation

differential problem

residual loss
model



Inductive Bias vs Real Data

Inductive Bias

Physical Equations

Constraints and Symmetries

Data

Full Order Models simulations

Sensor Data
PINNS ROMs

➔ Data and Physical knowledge must be balanced  to build a truthful and reliable  ML model 



Physics Informed Neural 
Networks - latest advancements 
and software

#data-free #software #pinns
#pde-modelling #mesh-agnostic

 



Applications of 
Physics Informed 
Neural Networks

➔ Inverse Modelling and Optimal 
Control in PINNs

➔ Inverse Problem for Heating 
Steel Bar

References::
Demo, Nicola, Maria Strazzullo, and Gianluigi Rozza (2023). "An extended 
physics informed neural network for preliminary analysis of parametric 
optimal control problems." Computers & Mathematics with Applications 
143 ..



Solve Inverse Problems with PINNs

● General formulation: 
infer unknown parameters such that:

The model equations are fullfilled:

Pre-computed data are fitted: 

● Examples of applications:  find properties of materials to satisfy 
specific operating conditions.

● PINN formulation: 
find u and               minimizing the loss:  

+



A first preliminary inverse problem with PINN

Poisson parametric inverse problem:

Result: 
quick convergence to 
the expected result

Solutions and parameters through training epochs



The heat problem test case

Our test case:  a squared plate heated by a moving 
laser source having a constant velocity.

Unknown parameters: material properties of the plate 
(thermal conductivity k and diffusivity constant m)

Goal:  understanding the thermal behaviour of Additive 
Manufacturing (AM) components to improve the process 
design and enhance quality control

FEM simulation: evolution of the 
temperature on the plate surface as 
the laser is moving



The heat problem test case

Unknown material properties

● Equation:

● Data:  

Truth at t=10.7 s PINN solution at t=10.7 s

Preliminary results:

Test case:  a squared plate heated by a moving laser source.



Optimal Control Applications

➔ Parametric optimal control problem can easily be solved leveraging PINNs

➔ Physics-informed Architecture: fit the architecture model to your problem (hard constrained)

References::
Demo, Nicola, Maria Strazzullo, and Gianluigi Rozza (2023). "An extended physics informed neural network for preliminary analysis of parametric optimal control 
problems." Computers & Mathematics with Applications 143 ..



Physics Informed 
Neural Network 
and ROMs Software

➔ User friendly
➔ Multiple HPC Devices (GPU, TPU, …)
➔ ROMs, PINNs, NOs, and all the 

state-of-the-art methods 
implemented



PINA - Learning Solution to PDE with simple code 

➔ Physics Informed Neural network for 
Advanced modelling  is Python software for 
solving PDEs using State-Of-The-Art Models

◆ Highly sectorized and customizable

◆ Multi-device /  hardware training

◆ PyTorch Lightning backhand

◆ Easy tutorials to start!



Solving PDEs with PINA - Problem Definition

Define Problem

          
Generate Data Choose Model Choose Solver Train

class Poisson(SpatialProblem):

    # define laplace equation

    def laplace_equation(input_, output_):

        force_term = (torch.sin(input_.extract(['x'])*torch.pi) *

                        torch.sin(input_.extract(['y'])*torch.pi))

        return laplacian(output_.extract(['u']), input_) - force_term

    # output variables and spatial domain

    output_variables = ['u']

    spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})

    conditions = {

'gamma1': Condition(location=CartesianDomain({'x': [0, 1], 'y':  1}), equation=FixedValue(0.0)),

          'gamma2': Condition(location=CartesianDomain({'x': [0, 1], 'y': 0}), equation=FixedValue(0.0)),

        'gamma3': Condition(location=CartesianDomain({'x':  1, 'y': [0, 1]}),equation=FixedValue(0.0)),

        'gamma4': Condition(location=CartesianDomain({'x': 0, 'y': [0, 1]}), equation=FixedValue(0.0)),

        'D': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1]}), equation=Equation(laplace_equation))}



Solving PDEs with PINA - Data Generation

Define Problem

          
Generate Data Choose Model Choose Solver Train

PINNs equations are evaluated over the 
neural network on some scattered sample 
points of the domain



Solving PDEs with PINA - Model Selection

Define Problem

          
Generate Data Choose Model Choose Solver Train

# make model
model = FeedForward(input_dimensions=2,output_dimensions=1, layers=[8, 8],func=Softplus)

PINA implements most SOTA models:
● FeedForward
● Residual Networks
● Fourier Neural Operator (FNO)
● Deep Operator Network (DeepONet)
● …..



Solving PDEs with PINA - Solver Selection

Define Problem

          
Generate Data Choose Model Choose Solver Train

# make solver
pinn = PINN(problem, model, loss, optimizer,scheduler, extra_features)

PINA implements most SOTA solvers:
● PINN (and extensions, gPINN, causalPINN, ..,)
● GAN solvers (GAN, GAROM)
● Graph Neural Solvers (MP-PDE, GNO, ….)
● …..



Solving PDEs with PINA - Training

Define Problem

          
Generate Data Choose Model Choose Solver Train

# trainer
trainer = Trainer(pinn, max_epochs, accelerator, batch_size, gradient_clip_val,gradient_clip_algorithm)
# train
trainer.train()



PINA for Differential Equations Learning

Visit Our Web Page!

PINA is much more than a simple software for PINNs

◆ SOTA Neural Operators and customizable trainings 

◆ TensorBoard API for model training visualization

◆ Data-Driven Reduced Order Modelling

◆ Deformation Models by Physics Informed Networks

◆ …..

Reference: 
Coscia, D., Ivagnes, A., Demo, N., & Rozza, G. (2023). Physics-Informed Neural networks for Advanced modeling. Journal of Open Source 
Software, 8(87), 5352.



Reduced Order Models
enhanced by Deep Learning

# deep learning # generalization
#offline-online #fast-computing

 



Enhancing ROM techniques by Deep Learning 

Artificial Intelligence can enhance classical ROM techniques for Computational Fluid Dynamics

References:
1. F. Romor, G. Stabile, and G. Rozza, (2023). "Non-linear manifold ROM with Convolutional Autoencoders and Reduced Over-Collocation 

method." Journal Scientific Computing.
2. D. Papapicco, N. Demo, M. Girfoglio, G. Stabile, and G. Rozza, (2022). "The Neural Network shifted-proper orthogonal decomposition: A 

machine learning approach for non-linear reduction of hyperbolic equations.", accepted for Computer Methods in Applied Mechanics and 
Engineering.



Multi-fidelity Approach: overcoming POD linearity limitation

References:
1. Demo, N., Tezzele, M. & Rozza, G. (2023). A DeepONet multi-fidelity approach for residual learning in reduced order modeling. Adv. Model. 

and Simul. in Eng. Sci. 10, 12 . https://doi.org/10.1186/s40323-023-00249-9

Residual Learned by DeepONet

Neural Networks can be adopted for improving the accuracy of a POD-based model



Advantages

➔ Multi fidelity perspective
◆ NN learns the difference 

between the fidelities
➔ Generalization

◆ Learning the residual using 
the same snapshots 
employed for building the 
POD space increase 
generalization

Navier-Stokes 2d backstep problem test case

References:
1. Demo, Nicola, Marco Tezzele, and Gianluigi Rozza (2023). "A DeepONet multi-fidelity approach for residual learning in reduced order 

modeling." arXiv preprint arXiv:2302.12682.

Multi-fidelity Approach: overcoming POD linearity limitation



Tackling the Curse of Dimensionality by Deep Domain Decomposition

Generalize the evolution of a system over initial conditions in an extended parameter space

References:
1. Gonnella, I. C., Hess, M. W., Stabile, G., & Rozza, G. (2023). A two-stage deep learning architecture for model reduction of parametric 

time-dependent problems. Computers & Mathematics with Applications, 149, 115–127. doi:10.1016/j.camwa.2023.08.026

➔ Curse of dimensionality (CoD) for sampling 
high dimensional parameter spaces

➔ Tackling CoD by partitioning the 
parameter space and averaging the ROM 
solutions

➔ Long-short term memory network (LSTM) 
coupled with convolutional networks 
(C-LSTM) for extracting temporal 
correlations

partitioning weighting



References:
1. Gonnella, I. C., Hess, M. W., Stabile, G., & Rozza, G. (2023). A two-stage deep learning architecture for model reduction of parametric 

time-dependent problems. Computers & Mathematics with Applications, 149, 115–127. doi:10.1016/j.camwa.2023.08.026

Tackling the Curse of Dimensionality by Deep Domain Decomposition



Graph Neural Networks - defeat mesh discrete ROMs  

Message Passing Optimization

ROMs based on Graph Neural Networks work on scattered data, no need all simulations to 
the have same discretization

node edge

A Graph is a 
collection of 
nodes and edges 
similar to a mesh



Nonlinear mesh invariant ROMs via Graph Neural Networks

● 3D and time-dependent extensions
● physics-based loss
● multi-fidelity context
● neural operators
● generative architecturesReferences:

1. Pichi, Federico, Beatriz Moya, and Jan S. Hesthaven (2024). "A graph convolutional autoencoder approach to model order reduction for 
parametrized PDEs." Journal of Computational Physics.

latent space loss full space loss



References:
1. Pichi, Federico, Beatriz Moya, and Jan S. Hesthaven (2024). "A graph convolutional autoencoder approach to model order reduction for 

parametrized PDEs." Journal of Computational Physics.

Nonlinear mesh invariant ROMs via Graph Neural Networks



Generative Models - Quantify Model Uncertainty

➔ Generative modelling learns probability distributions on the data
➔ A priori uncertainty quantification can be done with probability distributions
➔ Learning distribution of solutions to Partial and Stochastic Partial  Differential equations

Generative Network
random noise samples of solution

system 
parameters



References
Coscia, D., Demo, N., & Rozza, G. (2024). Generative Adversarial Reduced Order Modelling. Nature Scientific Report.

High generation accuracy with error estimates!GAN approach to learn the distribution of solutions

solution 
variance (UQ)

Generative Models - Quantify Model Uncertainty



Conclusions

➔ It is time to better integrate Data, Modelling, Analysis, Numerics, Control, 
Optimization and Uncertainty Quantification in a new parametrized, reduced 
and coupled paradigm;

➔ We need to draw the attention to the fact that 
"Science and Engineering could advance with 
Mathematics (CSE)"

➔ Applied Mathematics as propeller for 
methodological innovation and technology 
transfer by a new generation of talented 
computational scientists


