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Introduction and Leading
Motivations

#HPC #PDEs #DL
Hoffline-online H#software



Leading Motivation: Computational Sciences challenges

-> Reduced Order Modelling is a quickly emerging field in applied
mathematics and computational science and engineering for
speeding up Numerical Simulations

=>  Growing demand of

¢ efficient computational tools

€ many query and real time computations
® parametric formulations

€ uncertainty quantification

=> The need of a computational collaboration rather than a
competition between High Performance Computing (HPC) and
Reduced Order Methods (ROM), as well as Full/High Order and
Reduced Order Methods.




Physical Parametric Differential Problems Overview

Parametric Differential Problem are ubiquitous in many field of Natural Science from
naval and nautical engineering, to aeronautical engineering and industrial engineering.

>

automotive biomedics aeronautics

. UMean Magnitude =

« —— ~—

0.0e-+00 —_ 6.2e+01
| —

References:
1 Rozza, Gianluigi, Giovanni Stabile, and Francesco Ballarin (2022) eds. Advanced Reduced Order Methods and Applications in
Computational Fluid Dynamics. Society for Industrial and Applied Mathematics.




The Deep Learning New Era

Physics Informed Neural Networks (PINNs), Deep Learning ROM (DL-ROMs) and Neural
Solvers are revolutionizing the field of Computational Science bringing high generalization
capability
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Towards real-time computation (hardware)

OFFLINE (full order) ONLINE (reduced order)
Advanced ROM techniques

High Performance Computing

+ Very expensive and time demanding;

*

. . . Extremely fast;
+ basis calculation done once after suitable

parameters sampling (ex: Proper Orthogonal * real-time input-output evaluation;
Decomposition, RB, PGD, ...);

+ HPC facilities.

*

computational webserver via browser;

*

in situ, tablets or smartphones.



Computational Webserver/Computational Apps

Model order reduction for computational web server: to real world applications argos.sissa.it
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Digital Twin (DT): integration of emerging fields

A large amount of data (Big Data) can be collected, Artificial Intelligence (Al) can help to store and
organize them (data-driven approaches).

By using black box models, Al techniques are able to find fitting functions. They do not require
knowledge about the physics of the problem, even if we do prefer integrated "Big Models" Physics
informed approaches.

The development of High Performance Computing (HPC) and its integration with reduced order
models allowed to reach better performances.
* Uncertainty quantification (UQ),

% Data analytics,

x Artificial intelligence (Al),

+ Digital Twins of products and processes.

Thanks to ROMs we have a more sustainable framework, energy savings, reduced computational times
and resources.




SISSA mathLab: our current efforts and perspectives

A team developing Advanced Reduced Order Methods for parametric PDES!




SISSA mathLab: our current efforts and perspectives

Goals of our research group.

- Face and overcome several limitations of the state of the art for
parametric ROM by means of Deep Learning

- Improve capabilities of reduced order methodologies for more
demanding applications in industrial, medical and applied sciences
settings

- Carry out important methodological developments in Numerical
Analysis, with special emphasis on mathematical modelling and a
more extensive exploitation of Computational Science and Engineering

- Focus on Computational Fluid Dynamics as a central topic to enhance |
broader applications in multiphysics and coupled settings (e.g.
aeronautical, mechanical, naval, cardiovascular surgery, ..)




SISSA mathLab: our current efforts and perspectives

>  Development of new open-source tools based on reduced order methods:

o ITHACA Inreal Time Highly Advanced Computational Applications, as an add-on to
integrate already well established CSE/CFD open-source software

o  RBniCS as educational initiative (FEM) for newcomer ROM users (training).

o  Argos Advanced Reduced order modellinG Online computational web server for parametric
Systems

o  PINA a deep learning library to solve differential equations

o  EzyRB data-driven model order reduction for parametrized problems

o  PyDMD a Python package designed for Dynamic Mode Decomposition ( in collaboration
with University of Texas, CERN, and University of Washington)




A short history of
Scientific Machine Learning

#roms #history #pinns
#offline-online #neuraloperators



Scientific Machine Learning for PDEs

ODE/PDE Loss
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https://towardsdatascience.com/discovering-differential-equations-with-physics-informed-neural-networks-and-symbolic-regression-c28d279c0b4d
https://towardsdatascience.com/solving-inverse-problems-with-physics-informed-deeponet-a-practical-guide-with-code-implementation-27795eb4f502
https://towardsdatascience.com/operator-learning-via-physics-informed-deeponet-lets-implement-it-from-scratch-6659f3179887
https://towardsdatascience.com/operator-learning-via-physics-informed-deeponet-lets-implement-it-from-scratch-6659f3179887
https://icerm.brown.edu/programs/sp-s20/w1/
https://www.vectorstock.com/royalty-free-vector/person-silhouette-with-question-mark-vector-13296382

How to solve PDEs by Scientific Machine Learning

The ML pipeline can be divided into four stages

Select a problem to solve e.g. fluid dynamics, stochastic pdes, ..

1,
2. Generate the data, e.g. high fidelity simulations, scattered data from the domain, ..
3. Build a ML model, e.g. NNs, POD + Interpolation, Neural Operators, ..
4. Optimize the model, e.g. by Supervised, Physics-Informed losses and gradient descent
8t¢ +u- V¢ =0

. O 8

O
data generation build ML model optimization

problem to solve




The Data-Driven
Approach to
Reduced Models

Latent coordinates SWE

Reducing Parameter Space .

Applicable for Sensor and B . U B
|nCOmpl.ete Data ) 2 N—S:O N ) 0 \ 0.137
Fast Online Phase e e S
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Reduced Order Model - Accelerating Numerics

* ()p: Full Order Methods (FEM, FV, FD, SEM) are high fidelity solutions - to be accelerated,;
+ ()F°M. Reduced Order Methods (ROM) - the accelerator.

*

Input parameters:
w (geometry, physical properties, etc.)

* Parametrized PDE:
A(u(p); p) =0

* QOutput: .
u(p) =~ up(p) = u(p)

full order reduced order
* Input-Output evaluation:
lack-box ROM
(BlocksEa pooou(p) = u()
References:
1 Hesthaven, J. S, Rozza, G., & Stamm, B. (2016). Certified reduced basis methods for parametrized partial differential equations

(Vol. 590, pp. 1-131). Berlin: Springer.
2. Rozza, G, Stabile, G., & Ballarin, F. (Eds.). (2022). Advanced Reduced Order Methods and Applications in Computational Fluid
Dynamics. Society for Industrial and Applied Mathematics.



Data-Driven approach to ROM

ROM approximate the high dimensional solution manifold by dimensionality reduction and perform
interpolation to predict for unseen parameters

Reduction

u(u*) =12

s(u*) =7

Approximation

uROM(” *) ~ ll(ﬂ *)

Back-mapping

interpolation

regression
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Manifold Reduction - extracting latent features

Snapshots’ matrix S

> Ndof Uy u, e u,,

« Singular Value Decomposition: U = MXZV’ |

* The first  columns of M span the reduced space | r << Ny, M—p ™

¢ Evaluation of the modal coefficients S ‘ |




Interpolation - approximate the low dimensional
manifold

Approximation

Evaluate the modal coefficients at unknown parameter:
* Interpolation techniques: Radial Basis Function (RBF), ... s(iy)

* Regression techniques:

s(p*) =?

Gaussian Process Regression (GPR), neural
networks, ... . 240

S
P
-'-:.-‘-.—" @

Back-mapping

ROM prediction

wOME) =M, s@*) —— u*M@*) ~ u@E*




Physics Informed
Neural Network

No need of Data, only Equations vAu+ (u-Viu +VVP =(0)
u =

Scatter Domain Data -> Avoiding u = pf7hs (v = 2)(5 — x1), 0}

g u=0
MeShlng . vg—ﬁ —pn=0 Velocity along z (u = 27.26
General (inverse forward problems) , .
and Fast -~ — e

Z
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The Physics Informed Neural Network (PINN)

Physics Informed Neural Network is an optimization technique to compute solution of
differential equation using Neural Networks

A(u(z,p)) =0 z€Q
Blu(z,u)) =0 z € dQ ug(@, 1)
@)
Q O
+ O @)
O
O
O
problem to model
solve
References:
1 Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving

forward and inverse problems involving nonlinear partial differential equations." Journal of Computational physics 378 (2019): 686-707.
2. Cuomo, Salvatore, et al. "Scientific machine learning through physics-informed neural networks: Where we are and what's next." Journal
of Scientific Computing 92.3 (2022): 88.




The Physics Informed Neural Network (PINN)

A parametrized ML model wug(z, ) is used to approximate the true solution w(z, )
on some samples of scattered data inside the domain

approximate
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pass it through a DL

extract coordinates
model

from the domain



The Physics Informed Neural Network (PINN)

The underlying differential equation in PINNSs is used to derive the loss function, where the
differential operators are computed by automatic differentiation

{A(U(w,u)) =0 zecQ
B(u(z,u)) =0 x € 0N

differential problem

L= Z | ACug (i, i) )II* + 1|1 B(us (i, 1i))]|*

=1
residual loss



Inductive Bias vs Real Data

-  Dataand Physical knowledge must be balanced to build a truthful and reliable ML model

Inductive Bias Data

Physical Equations Full Order Models simulations

Constraints and Symmetries Sensor Data




Physics Informed Neural

Networks - latest advancements
and software

#data-free  #software #pinns
#pde-modelling #mesh-agnostic



Figure : Parametric Stokes Optimal Control Problem. The field p, r, u, v and z are shown for
p =1, from the top to the bottom. Left column. Standard FNN approximation. Right column.
PI-Arch approximation.
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References:: )
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Solve Inverse Problems with PINNs

e General formulation:

infer unknown parameters (Mi ?=1 such that:

= The model equations are fullfilled:

PINN formulation:

find u and

ou ou 0%u
— s 1o Do =00y =0
Y f(a azﬂlﬂz /4)

= Pre-computed data are fitted:

u(t,x) = ugy,,,(t,x)

» | Z data

(Mi ?:1

ou

=—+
ot

= Uu—

e Examples of applications: find properties of materials to satisfy

specific operating conditions.

minimizing the loss:

ou 0°u
a 027ﬂ17ﬂ27'-°’/’t

Ujgata



A first preliminary inverse problem with PINN

(-2,2) (2,2)

Poisson parametric inverse problem:

{Au = e‘z(xﬂ\(yw Q o) 0Q
u =0 on 0Q -/

Unknown parameters
in range (-

Result: 2l
quick convergence to
the expected result
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The heat problem test case

FEM simulation: evolution of the
Goal: understanding the thermal behaviour of Additive temperature on the plate surface as

. . the laser is moving
Manufacturing (AM) components to improve the process — ; -
design and enhance quality control

0.01
Our test case: a squared plate heated by a moving £ 0.005 g
. . { o
laser source having a constant velocity:. © o
£ 0 &
2 2
>-0.005

Unknown parameters: material properties of the plate
(thermal conductivity k and diffusivity constant m)

-0.01  -0.005 0 0.005 0.01
x-coordinate in m




The heat problem test case

Test case: a squared plate heated by a moving laser source.

e Data: 0=T7T-T_

e Equation:
0

—|kAO = laser source(x, y, t) — h0 + ...

¢

Unknown material properties
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Preliminary results:
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Optimal Control Applications

->  Parametric optimal control problem can easily be solved leveraging PINNs

- Physics-informed Architecture: fit the architecture model to your problem (hard constrained)

1 1 1
0.8 0.8
1St NN 0.15
0.6 0.6
0 0.4 0 0.4 Y o
K2 —>
/'/- 0.2 0.2 5.1072
o /%
l‘ll‘- -1 0 =], 0 =] 0
X%
Q“’ "“
e
(XX

H

z1 — — ulx,p) > O—— X ——@— z(x,p)
M3 — 1 1 1 I
K2 — — y(x, 1) 10 0.1 3
k1(xo, 1) — 0 0 0 R

5 §.10—2
&
: . - -0 0 1 0 L 0 10 i 0 10
References::

Demo, Nicola, Maria Strazzullo, and Gianluigi Rozza (2023). "An extended physics informed neural network for preliminary analysis of parametric optimal control
problems.” Computers & Mathematics with Applications 143 ..




Physics Informed
Neural Network
and ROMs Software

User friendly

Multiple HPC Devices (GPU, TPU, ..)
ROMs, PINNs, NOs, and all the
state-of-the-art methods
implemented

O PyTO rch o PyTorch Lightning

Created by Lightning Al




PINA - Learning Solution to PDE with simple code

Physics-Informed Neural networks for Advanced modeling .
/ \ =>  Physics Informed Neural network for
e N a—— —— Advanced modelling is Python software for

— o solving PDEs using State-Of-The-Art Models
@ DeepONet ® Geometries [ Solver ]
- - @ Highly sectorized and customizable
@ Spatial ® R3Refinment Trainer . . . .
® Parametric ® SwitchOptim [ ® ODEs/PDEs/Data @ Lightning Features ] Mu[tl_deVK:e / ha rd\x/a re tralnlng

® TimeDependent ® Custom
- NS J

PyTorch Lightning backhand
D D D D S

Choose Solver Train

Define Problem Generate Data Choose Model
Build a PINA problem Sample points in the Create or choose a Create or choose a Train the model
to solve domain, or pass data pyTorch model for Solver for the using the Solver
simulations the problem problem optimization strategy
o PyTorch Lightning ( ’) P | h

Created by Lightning Al

L R R 4

Easy tutorials to start!




Solving PDEs with

PINA - Problem Definition

class Poisson(SpatialProblem):

# define laplace equation
def laplace_equation(input_, output_):

force_term =

torch.sin(input_.extract(['y'])*torch.pi))

return laplacian(output_.extract(['u']), input_) - force_term

# output variables and spatial domain
['u']

spatial_domain = CartesianDomain({'x"':

output_variables =

e, 11, 'y': [e,

conditions = {

'gammal’: Condition(location=CartesianDomain({'x":
'gamma2' : Condition(location=CartesianDomain({'x":
'gamma3' : Condition(location=CartesianDomain({'x":
'gamma4' : Condition(location=CartesianDomain({'x":

'D': Condition(location=CartesianDomain({'x"': [@,

Define Problem

(torch.sin(input_.extract(['x"'])*torch.pi) *

Au(wa y) = sin (71'.’13) sin (Wy) (m7 y) = [07 1]2
u(a:,y) =0 (m’y) < 3[07 1]2

11})

[0, 1], 'y': 1}), equation=FixedValue(0.0))
[0, 1], 'y': 8}), equation=FixedValue(90.0))
1, 'y': [0, 1]}),equation=FixedValue(0.0))
0, 'y': [0, 1]}), equation=FixedValue(0.0))

11, 'y': [@8, 1]}), equation=Equation(laplace_equation))}



Solving PDEs with PINA - Data Generation

DT W PINNs equations are evaluated over the
EOF Y TS neural network on some scattered sample
St ? "~.:s"‘};°.;.*;"f;{'-‘ points of the domain

o oy . : 3
\'\).,,' R A Tk
P SR LN oo | SR

041 CHENEEEa

0q 0.2

Generate Data



Solving PDEs with PINA - Model Selection

# make model
model = FeedForward(input_dimensions=2,output_dimensions=1, layers=[8, 8], func=Softplus)

PINA implements most SOTA models:

e FeedForward
e Residual Networks
e  Fourier Neural Operator (FNO)
e Deep Operator Network (DeepONet)
[

N N

A

Choose Model



Solving PDEs with PINA - Solver Selection

# make solver
pinn = PINN(problem, model, loss, optimizer,scheduler, extra_features)

PINA implements most SOTA solvers:

e PINN (and extensions, gPINN, causalPINN, ..,
e  GAN solvers (GAN, GAROM)
e  Graph Neural Solvers (MP-PDE, GNO, ...)
[
N N
Ay

Choose Solver



Solving PDEs with PINA - Training

# trainer
trainer =
# train

trainer.train()

10-14

10-2

20

Trainer(pinn, max_epochs, accelerator, batch_size, gradient_clip_val,gradient_clip_algorithm)

p—

Train




PINA for Differential Equations Learning

PINA is much more than a simple software for PINNs

¢

L I R R ¢

Reference:

Coscia, D., lvagnes, A., Demo, N., & Rozza, G. (2023). Physics-Informed Neural networks for Advanced modeling. Journal of Open Source
Software, 8(87), 5352.

SOTA Neural Operators and customizable trainings
TensorBoard API for model training visualization
Data-Driven Reduced Order Modelling

Deformation Models by Physics Informed Networks




Reduced Order Models
enhanced by Deep Learning

# deep learning  # generalization
#offline-online #fast-computing



Enhancing ROM techniques by Deep Learning

Artificial Intelligence can enhance classical ROM techniques for Computational Fluid Dynamics

y

Enhancing data-driven reduction methods
® Approximation in Reduced Order Model (POD-NN,
AE-NN)

e Automatic preprocess data for dominant advection
models

e Auto-encoders for dimensionality reduction and
manifold learning

e Reduction in wide parameter space by means of deep
learning parameter domain decomposition

References:
1 F. Romor, G. Stabile, and G. Rozza, (2023). "Non-linear manifold ROM with Convolutional Autoencoders and Reduced Over-Collocation
method." Journal Scientific Computing.
2. D. Papapicco, N. Demo, M. Girfoglio, G. Stabile, and G. Rozza, (2022). "The Neural Network shifted-proper orthogonal decomposition: A
machine learning approach for non-linear reduction of hyperbolic equations.’; accepted for Computer Methods in Applied Mechanics and

Eniineer/ni.



Multi-fidelity Approach: overcoming POD linearity limitation

Neural Networks can be adopted for improving the accuracy of a POD-based model

u(u) = upgp (1) +r(p)

T— Residual Learned by DeepONet

GTI——
2 | INPUT PARAMETER POD WITH INTERPOLATION DEERONEFINEERENCE PREDICTION Branch Net
T";: 1. €ERP = powen ey | > rW=R@w 77777 > uy(p) ey [e) o o
Ve eV f — (o)
T Do
R(z1, p)
! -+ r(p)= s
o HIGH-FIDELITY LOW-FIDELITY RESIDUAL LEARNING 1) R, 1)
p= DATABASE DATABASE o 7 = u ) ( | . o) 5 o
= ; ey ) ) eyny P AT, ) = uly, fr) — UpODITL Hi —
) {(kiru(pi) € V)L {(1i, upon (i) € V)}y W ev.ie(l. . . ) o) 4 o
| A4 | Trunk Net
References:

1 Demo, N., Tezzele, M. & Rozza, G. (2023). A DeepONet multi-fidelity approach for residual learning in reduced order modeling. Adv. Model.
and Simul. in Eng. Sci. 10, 12 . https://doiorg/10.1186,/540323-023-00249-9



Multi-fidelity Approach: overcoming POD linearity limitation

Velocity along z (u= 27.26 B POD B DeepONet B MFDeepONet

Advantages -
i
=»  Multi fidelity perspective -
€ NN learns the difference B O TG ey
between the fidelities MFDeepOnet

4

——

5 2
40 0
4 X
2 )
O0 10 20
x

Navier-Stokes 2d backstep problem test case

POD '
=>  Generalization g:_i
€ Learning the residual using . ¢
the same snapshots N i :
employed for building the z
POD space increase ’ ", 2
generalization

References:
1 Demo, Nicola, Marco Tezzele, and Gianluigi Rozza (2023). "A DeepONet multi-fidelity approach for residual learning in reduced order
modeling." arXiv preprint arXiv.2302.12682.




Tackling the Curse of Dimensionality by Deep Domain Decomposition

Generalize the evolution of a system over initial conditions in an extended parameter space

partitioning

- Curse of dimensionality (CoD) for sampling
high dimensional parameter spaces

> Tackling CoD by partitioning the
parameter space and averaging the ROM
solutions

- Long-short term memory network (LSTM)
coupled with convolutional networks
(C-LSTM) for extracting temporal
correlations

References:
1, Gonnella, I. C, Hess, M. W., Stabile, G, & Rozza, G. (2023). A two-stage deep learning architecture for model reduction of parametric
time-dependent problems. Computers & Mathematics with Applications, 149, 115-127. doii10.1016/j.camwa.2023.08.026




Tackling the Curse of Dimensionality by Deep Domain Decomposition

Time window - Exact — Approximated Time window - Exact — Approximated Time window - Exact — Approximated

Results and applications 117\ \/\&7?\ \N;;:'i\ %f; %%%W ,‘\' vh‘ ,'A‘ ,A\' ,A\' ’,\' ,A\‘ VA\' ’\‘ k
e Succesfully applied to ODEs 2 s w5 ? s w15 s w0 1
systems with both periodic and ' ' ‘
non-periodic dynamics. T 5 —— i s — g J e —
e Applied to large discretized M"""— D@SM %@ EEmT
PDE systems with a previous . ® s w0 B

POD decomposition. ' t

Rayleigh_ Benard cavity Figure: Duffing Oscillator (above) and_Predator Prey system predictions (below) for
random testing parameters compared with the exact solutions.

e 97% reduction in the
computational time

® mean percentage error lower E o M

0 100000 200000 300000 100000 500000

than 1% in a time-window 50 time-steps
times larger than the input one.

Figure: Relative error progression in time : L
Figure: Velocity field and error

at a given advanced time-step.
Reterences:

1, Gonnella, I. C, Hess, M. W., Stabile, G, & Rozza, G. (2023). A two-stage deep learning architecture for model reduction of parametric
time-dependent problems. Computers & Mathematics with Applications, 149, 115-127. doii10.1016/j.camwa.2023.08.026




Graph Neural Networks - defeat mesh discrete ROMs

ROMs based on Graph Neural Networks work on scattered data, no need all simulations to

the have same discretization
Message Passing Optimization

[1] MESSAGE: for each node v € V to be sent m{ = m(k)(h(kal))
~ linear layer: mf,k) = W(k)hf,k_l), where W(K) is the weight matrix

ACraphiis a [2] AGGREGATION: gather messages my),) = a¥)({m{"), vv € N()})
collection of ~~ perm. invariant: sum, mean, max over neighbors N(u)

[3] TRANSFORMATION: nonlinear priors h{) = u()(m{}) )
nOdeS and edges ~+ activation functions: RelLU, tanh, ... -
similar to a mesh 2@ -

)’ N - h© = u,
m® “
v~\_® hf}g) —us
w h® a® .mm h,‘f?’ =
node edge ' @ [ @

m®

= ©
D -w




Nonlinear mesh invariant ROMs via Graph Neural Networks

GCA' ROM (@) https: //github.com/fpichi/gca-rom

ENCODER DECODER

AUTOENCODER i I I i OFFLINE PHASE

iy = ow(un(p))
Semi-supervised

LATENT MAP

——
II°o° I I I |—>I000I ‘ |°°°

DECODER

NONLINEAR ONLINE PHASE

ROM

perun(p) o~ dv(e) = Pw(un(e))

in () = bw(iin(e)) e 3D and time-dependent extensions
Nie N, e physics-based loss

1 iy e i o 1 ~ i NI : :
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Nonlinear mesh invariant ROMs via Graph Neural Networks

Bifurcating PDEs in computational Fluid Dynamics

—polu(p) + (u(p) - V) u(p) + Vp(p) =0
V-u(p)=0

u(p) = uin

u(p)=0

po2e (1) — p(u)n =0

Parameters:
= o € [0.5,2] kinematic viscosity
= g1 € [0.5,2] inlet's width
= Nj = 8157 dofs
= M = 3171 snapshots

Hyperparameters:
= train rate r; = 10%
= latent n = 25, epochs Ne, = 5000
References:
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Generative Models - Quantify Model Uncertainty

- Generative modelling learns probability distributions on the data
> A priori uncertainty quantification can be done with probability distributions
- Learning distribution of solutions to Partial and Stochastic Partial Differential equations

samples of solution

random noise
Generative Network

system
parameters

u(p) ~ p(u| p)




Generative Models - Quantify Model Uncertainty

GAN approach to learn the distribution of solutions High generation accuracy with error estimates!
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Conclusions

It is time to better integrate Data, Modelling, Analysis, Numerics, Control,
Optimization and Uncertainty Quantification in a new parametrized, reduced
and coupled paradigm;

We need to draw the attention to the fact that
'Science and Engineering could advance with
Mathematics (CSE)"

Applied Mathematics as propeller for
methodological innovation and technology
transfer by a new generation of talented
computational scientists




